
Static Program Analysis
Foundations of Abstract Interpretation

Sebastian Hack, Christian Hammer, Jan Reineke

Advanced Lecture, Winter 2014/15

Abstract Interpretation

 Semantics-based approach to program analysis

 Framework to develop provably correct and terminating

analyses

Ingredients:

 Concrete semantics: Formalizes meaning of a program

 Abstract semantics

 Both semantics defined as fixpoints of monotone

functions over some domain

 Relation between the two semantics establishing

correctness

Concrete Semantics

Different semantics are required for

different properties:

 “Is there an execution in which

the value of x alternates between

3 and 5?” Trace Semantics

 “Is the final value of x always the

same as the initial value of x?”

 “Input/Output” Semantics

 “May x ever assume the value 45

at program point 7?”

 Reachability Semantics

start

1

2

5

6 7

8

x = x % 5

y = 42

Pos(x < y)

Pos(a<b) Neg(a<b)

Neg(x < y)

x = x+2 x = x+1

3

4

a = M[x]

b = M[x+1]

Concrete Semantics

 Trace Semantics: Captures set of traces of

states that the program may execute.

 Input/Output Semantics: Captures the pairs of

initial and final states of execution traces.

 Abstraction of Trace Semantics

 Reachability Semantics: Captures the set of

reachable states at each program point

 Abstraction of Trace Semantics

Reachability Semantics

Captures the set of reachable states at each

program point. Formally:

Example:
start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2

x \in {…, -2, -1, 0, 1, 2, …}

x \in {0, …, 100} x \in {101}

Reachability Semantics

Can be captured as the least solution of:

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2

Questions

 Why the least solution?

 Is there more than one solution?

 Is there a unique least solution?

 Can we systematically compute it?

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2

Answers

 Is there more than one solution? Often

 Is there a unique least solution? Yes

 Can we systematically compute it? Yes and No

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2

Why? Knaster-Tarski Fixpoint Theorem

Raises more questions:

 What is a complete lattice?

 What is a monotonic function?

 What is a fixed point?

Monotone Functions

Examples:

Which of these are monotone?

Need to know what the order is.

Partial Orders

Partial Orders: Examples I

Partial Orders: Examples II

What about ?

Complete Lattices

What is an upper bound of a set A?

What is the least upper bound (also: join, supremum) of a set A?

Least Upper Bounds: Examples I

Which of these are complete lattices?

Least Upper Bounds: Examples II

Which of these are complete lattices?

Properties of Complete Lattices

Generic Lattice Constructions:

Power-set Lattice

Graphical representation (Hasse diagram):

Generic Lattice Constructions:

Total Function Space

What about ?

Generic Lattice Constructions: Flat Lattice

Graphical representation (Hasse diagram) with :

… -3 -2 -1 0 1 2 3 …

Fixed Points

Example:

Has multiple fixed points: But a unique least fixed point.

Knaster-Tarski Fixpoint Theorem

Raises more questions:

 What is a complete lattice? ✓

 What is a monotonic function? ✓

 What is a fixed point? ✓

Back to the Reachability Semantics

Can be captured as the least fixed point of:

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2

Monotone?

How to Compute the Least Fixed Point

Kleene Iteration:

Why is this increasing?

Will this reach the fixed point?

 It will here:

 But in general?

start

1 3

x = 0

Pos(x < 100)

Neg(x < 100)

x = x+1

2

start

1 3

x = 0

Pos(true)

Neg(true)

x = x+1

2

No!

Lattice has infinite ascending chains.

Ascending Chain Condition

 Length of longest ascending chain determines worst-case complexity

of Kleene Iteration.

 … -1 0 1 …

Power set lattice
Flat lattice

How about total function space lattice?

Recap: Abstract Interpretation

 Semantics-based approach to program analysis

 Framework to develop provably correct and terminating

analyses

Ingredients:

 Concrete semantics: Formalizes meaning of a program

 Abstract semantics

 Both semantics defined as fixpoints of monotone

functions over some domain

 Relation between the two semantics establishing

correctness

✓

(✓)

Abstract Semantics

Similar to concrete semantics:

 A complete lattice (L#, ≤) as the domain for

abstract elements

 A monotone function F# corresponding to the

concrete function F

 Then the abstract semantics is the least fixed

point of F#, lfp F#

If F# “correctly approximates” F,

 then lfp F# “correctly approximates” lfp F.

An Example Abstract Domain

for Values of Variables

How to relate the two?

 Concretization function, specifying “meaning” of abstract values.

 Abstraction function: determines best representation concrete values.

Relation between Abstract and Concrete

Are these functions monotone?

Why should they be?

What is the meaning of the partial order in the abstract domain?

What if we first abstract and then concretize?

How to Compute in the Abstract Domain

Example: Multiplication on Flat Lattice

0 a

0

b

*

Denotes abstract

version of operator

How to Compute in the Abstract Domain?

Formally

Local Correctness Condition:

Correct by construction

(if concretization and abstraction have certain properties):

From Local to Global Correctness

Fixpoint Transfer Theorem

