SSA

Sebastian Hack
hack@cs.uni-saarland.de

Static Program Analysis 2014

SAARLAND (el
UNIVERSITY 5
I —

COMPUTER SCIENCE

Another kind of CFGs

re®

X < €

7@

Effects on edges. Nodes called
program points. One data flow fact
per program point. Join of data flow

facts done in fixpoint iteration

(cf. data flow slides).

D, (¢)
([ree]
D, (¢)

Nodes are basic blocks of

instructions. Closer to the hardware.

Edges denote flow of control. Every
node has incoming (o) and
outgoing (e) data flow information:

D)= || Dup)

pEpred(£)

N

Problem and Motivation

m Consider Constant Propagation

e m Lattice: D := (Vars = Z '),
v ~ m Per CFG node we have to keep a
’ D: true(y =1) ‘ ’ E: false(y =1) ‘ mapping from V := | Vars| variables
¥ | to abstract values
m Space requirement N x V
¥ ~
’ H: trui(x =1 ‘ ’ & fa/si(x =Y ‘ m Thus runtime O(N x V) rounds in
’ - ‘<_{ K:y«2 ‘ the fixpoint iteration
¥ ——
_{ L: true(?) ‘ 1 M : false(?) ‘ m and O(N x V?) in analysis updates

v per variable

Flow-Insensitive Constant Propagation

m Get around storing a map from vars

to Z" at every program point
> C:
v - m Keep one element x € D per CFG
’ D : true(y =1) ‘ ’ E : false(y = 1) ‘ not per program point
v
B Solve the single equation
v ~ d3 I_I fi(d)
’ H : true(x = 1) ‘ ’ fa/se (x=1) ‘ P
v
’ J: ‘ Kiy<«2 ‘ m Loss of precision because abstract
¥ - I G values of all definitions of a variable
—{L:true(.)‘ WM.false.)‘ are joined

¥

SSA

X2 — P(x1, X5)
2 <= ¢(y1,ys)
v ~
’ D : true(y» = 1) ‘ ’ E : false(y» = 1) ‘
* !
Xq4 < X2, X3
X5 <— g(— Xq)
¥ ~
’ H : true(xs = 1) ‘ I : false(xs = 1) ‘
12 2
’J y4<—(;5(y2,y3)‘ K: y3<—2‘
\

—{ L: true(") ‘

W M : false(?) ‘

17
N : print(xs)

Flow-Insensitive Analyses

Each Variable has a static single
assignment, i.e. one program point
where it occurs on the left-hand
side of an assignment

Identify program points and variable
names

¢-functions select proper definitions
at control-flow joins

(Un-Conditional) Constant Propagation in SSA

B Perform flow-insensitive analysis on SSA-program
m Domain: D := (Vars — Z])

m Transfer functions:

LIFD = D
[x < e]*D := D[x— [e]]
[x < Mle];]*D := D[x+~ T]
[Mle1] «] D = D
[xo < é(x1,...,x)]#D = D[xo+ |_|1§i§n D(x)]

B ¢-functions make join over different reaching definitions explicit

m Solve single inequality
D3| |fiD
i

by fixpoint iteration

Example

L X2 = ¢(X15X5)
©yo (1, ya)

v ~.
’D:true(yzzl)‘ ’E'false(yzzl)‘
' !

X O(x2,x3))
Fieio

’ H: truev(x_r, =1) ‘

’ I : false(xs = 1) ‘

’J:y4<—v¢(y2,y3)‘<—{K:y3<—2‘

—{ L: trtle(?) \

’ M : false(?) ‘

¥
N : print(xs)

s
=
R I N
HNoH AN = e e
HNo A AN A A= o

ya

Round-robin iteration. Initialization
with L. Fixed point reached after
three rounds. Precision loss at ¢s
because we could not exclude
unreachable code.

~

Conditional Constant Propagation on SSA
called sparse conditional constant propagation (SCCP) [Wegman et al. 1991]

m Consider control flow as well. Perform two analysis in parallel
m Cooperation between two domains:

D= Vars - Z] Blocks — C :={d,r}
B d = dead code, r = reachable code

m Two transfer functions per program point /:
fi : D x C — D for constant propagation
gi : D x C — C for reachability

Solve system of equations

X LI fi(x,y)

3J
= xeD,yeC
y 3 Ueilxy) Y

Example

0 1 2
X1 1 1 1
v 4 1 1
X L 1 1
¥o 1 1 1
X ¢(x1, x5) x| L2002
x | L 1 1
y2 < $(y1, ya) % | L 1 1
y3 | L 2 2
¥ A r r r
D : true(y. =1 Bla r =
’ (y2) C d r r
v D d r T
E d d d
X4 $— (15(X27 X3) F d r r
G d d d
X 2 —x
5 4 H d r r
¥ ! d 4 d
J d r r
’ H : true(xs = 1) ‘ ’ I : false(xs = 1) ‘ K|la a a4
¥ L d r r
M d r r
’J:y4<—¢(y2,y3)‘<—{K:y3<—2‘ N|da r r
¥ Round-robin interation. Each column shows the value of x € D
. ? . ? (upper rows) and y € C (lower rows) in a single iteration of the
L: true(:) ‘ ’ M: false(:) ‘ fixpoint algorithm. Initial values are L and d. Root node A
¥ initialized with r. Fixed point reached after one round. Can
prove code dead in cooperation with constant propagation
N prmt(XS) information.

Transfer Functions

m For constant propagation (functions f;)

[¢:x+ e]fD,C = D[x+ [e]f D]
[€:x« M[e];]*D,C := D[x < T]
[0:x0 < ¢(x1,...,x)]#D,C := Dxo+ |]X]
X = {x] Clpred(t,) = x}
[]D,C = D
m For reachability (functions g;)
d ‘DC
[¢: true(e)]* D,C = C|{+~ le] - 0
r otherwise
0C [e]*D
[0: false(e)]D.C = C |ovs {T OELel
d otherwise

[J¥D,C = C

Where to place ¢-functions?
Cytron et al.: Efficiently computing static single assignment form and the control
dependence graph, TOPLAS 1991

m ¢-functions have to be placed such that

1. SSA program P’ has the same semantics as original program P
2. Every variable has exactly one program point where it is defined

|
m Observation:

B First point reached by two different definitions of (non-SSA) variable
has to contain a ¢-function

B In the SSA-form program, every use is reached by a single unique
definition

11

Join Points

Two paths p : Xg — Xjand g: Yo 5 Y converge at a program point Z if

1.
2.
3.

Xo # Yo
Z=X =Y
)(J-/:Yk/ :>j:jl\/k=k’

A program point Z needs a ¢-function for variable a, if it is the
convergence point of two program points Xy and Yy where each is a
definition of a

Formally: J(S) :={Z | X,Y € S converge at Z}.

J(defs(a)) is the set of program points where ¢-functions have to be
placed for a

How to compute join points efficiently?

12

Dominance

B Every SSA variable has a unique program point where it is defined

m The definition of a SSA variable dominates all its (non-¢) uses

Definition (Dominance)

A node X in the CFG dominates a node Y if every path from entry to Y
contains X. Write X > Y.

m Dominance is a partial order

m Dominance is a tree order: For every X, Y, Zwith X > Zand Y > Z
holds X > Yor Y > X

m Strict dominance: X > Y =X > YAX #Y

® Immediate/direct dominator: idom(Z) = X with
X>ZANIY : X>Y>Z

13

Dominance Frontiers
Efficiently computing SSA. .. [Cytron et al. 1991]

Definition (Dominance Frontier)

DF(X)={Y | X # Y A (3P predecessor of Y : X > P}

m DF is lifted to sets: DF(S) = Uxes DF(X).
m DF(S) is the least fixed point X of F(X) = DF(SU X)

B Theorem:
DF+(X) = J(X)

m Proof Sketch:
1. Show that for every path p: X = Z there is a node in {X} U DF*(X)
on p that dominates Z
2. Show that the convergence point Z of two paths X = Z, Y 5 Z is
contained in DF(X) U DF*(Y)
3. Using this, we can show that J(S) C DF*(S)
Show DF(S) C J(S) for entry € S
5. Using induction on DF’ show that DF*(S) C J(S)

&

14

Lemma 1

For any nonempty path p : X —* Z there is a node
X' € {X} UDF*({X}) on p that dominates Z. If X dominates every node
on p, then X’ = X (1) else X’ € DFT({X}) (2).

Proof:

Assume X does not dominate every node on p (case 2), else case 1 holds. Then,
there is a first node X; that is not dominated by X. lts predecessor X;_; is
dominated by X. Therefore, X; € DF({X}) and DF*({X}) # 0.

We showed that there a node in DFT({X}). Now, consider the last node

X; € DFT({X}) on p. Assume X, does not dominate Z. Then, there is node Xj
further on p that is not dominated by X;. Hence, Xy € DF({X;}) C DF"({X})
which contradicts the choice of Xj.

15

Lemma 2

Consider two CFG nodes X # Y, Z and two paths p: X —* Z and
q:Y —7T Z that converge at Z. Then, Z € DFT({X}) UDFT({Y}).

Proof:

Consider the nodes X’ and Y’ we get from Lemma 1. Because X’ and Y’
dominate Z, X’ dominates Y’ or vice versa. Wlog, consider Y’ > X’. Then, all
paths from Y’ to Z go through X’, hence Z = X’.

Now consider the two cases of Lemma 1:

(2) X # X'. Then X! = Z € DFt({X}) which proves Lemma 2.

(1) X = X/ = Z and X dominates every node on p. Because X does not
dominate itself strictly, it is in its own dominance frontier: X € DF*({X}).

16

Putting It Together

m Lemma 2 shows that J(S) C DFT(S)

m By a simple argument, one can show that DF(S U {r}) C J(S) for all
sets of nodes S where r is the root of the CFG

m By induction, one shows that DF(S) C J(S) for all i. Note that
J(J(S)) = J(S).

m Hence: J(S) = DF*(S)

17

Dominance Frontiers

Definition (Dominance Frontier)

DF(X)={Y | X # Y N (3Z predecessor of Y : X > Z}

m Can be efficiently computed by a bottom up traversal over the
dominance tree:

1. Each CF-successor Z of X is either dominated by X or not

2. if not, it is in the dominance frontier of X

3. if yes, look at the dominance frontier of Z: All Y € DF(Z) not
dominated by X are also in DF(X)

DF(X) = {Y successor of X | X # Y}

u |J {YeDF2)|x#Y}
X=idom(Z)

18

SSA Construction

Cytron et al.

1. Compute dominance tree

2. Compute iterated dominance frontiers DF (X)) for all definitions of
each variable

3. Rename variables
m Every use takes lowest definition in the dominance tree
B Note that ¢-function uses happen at the end of the predecessors
B First lemma of proof sketch guarantees that this definition is available

19

