
SSA

Sebastian Hack
hack@cs.uni-saarland.de

Static Program Analysis 2014

computer science

saarland
university

1

Another kind of CFGs

p

q

x ← e

Effects on edges. Nodes called
program points. One data flow fact

per program point. Join of data flow
facts done in fixpoint iteration

(cf. data flow slides).

x ← e`

D◦(`)

D•(`)

Nodes are basic blocks of
instructions. Closer to the hardware.
Edges denote flow of control. Every
node has incoming (◦) and
outgoing (•) data flow information:

D◦(`) :=
⊔

p∈pred(`)

D•(p)

2

Problem and Motivation

A : x ← 1

B : y ← 1

C :

D : true(y = 1) E : false(y = 1)

F : G : x ← 2

H : true(x = 1) I : false(x = 1)

J : K : y ← 2

L : true(?) M : false(?)

N : print(x)

� Consider Constant Propagation

� Lattice: D := (Vars → Z>)⊥

� Per CFG node we have to keep a
mapping from V := |Vars| variables
to abstract values

� Space requirement N × V

� Thus runtime O(N × V) rounds in
the fixpoint iteration

� and O(N × V 2) in analysis updates
per variable

3

Flow-Insensitive Constant Propagation

A : x ← 1

B : y ← 1

C :

D : true(y = 1) E : false(y = 1)

F : G : x ← 2

H : true(x = 1) I : false(x = 1)

J : K : y ← 2

L : true(?) M : false(?)

N : print(x)

� Get around storing a map from vars
to Z> at every program point

� Keep one element x ∈ D per CFG
not per program point

� Solve the single equation

d w
⊔
i

fi (d)

� Loss of precision because abstract
values of all definitions of a variable
are joined

4

SSA

A : x1 ← 1

B : y1 ← 1

C :
x2 ← φ(x1, x5)
y2 ← φ(y1, y4)

D : true(y2 = 1) E : false(y2 = 1)

F :
x4 ← φ(x2, x3)
x5 ← 2− x4

G : x3 ← 2

H : true(x5 = 1) I : false(x5 = 1)

J : y4 ← φ(y2, y3) K : y3 ← 2

L : true(?) M : false(?)

N : print(x5)

� Flow-Insensitive Analyses

� Each Variable has a static single
assignment, i.e. one program point
where it occurs on the left-hand
side of an assignment

� Identify program points and variable
names

� φ-functions select proper definitions
at control-flow joins

5

(Un-Conditional) Constant Propagation in SSA

� Perform flow-insensitive analysis on SSA-program

� Domain: D := (Vars → Z>⊥)

� Transfer functions:

J; K]D := D
Jx ← e; K]D := D[x 7→ JeK]]

Jx ← M[e]; K]D := D[x 7→ >]
JM[e1]← e2K]D := D

Jx0 ← φ(x1, . . . , xn)K]D := D[x0 7→
⊔

1≤i≤n D(xi)]

� φ-functions make join over different reaching definitions explicit

� Solve single inequality

D w
⊔
i

fi D

by fixpoint iteration

6

Example

A : x1 ← 1

B : y1 ← 1

C :
x2 ← φ(x1, x5)
y2 ← φ(y1, y4)

D : true(y2 = 1) E : false(y2 = 1)

F :
x4 ← φ(x2, x3)
x5 ← 2− x4

G : x3 ← 2

H : true(x5 = 1) I : false(x5 = 1)

J : y4 ← φ(y2, y3) K : y3 ← 2

L : true(?) M : false(?)

N : print(x5)

0 1 2 3

x1 ⊥ 1 1 1
y1 ⊥ 1 1 1
x2 ⊥ ⊥ 1 >
y2 ⊥ ⊥ 1 >
x3 ⊥ 2 2 2
x4 ⊥ ⊥ > >
x5 ⊥ ⊥ > >
y3 ⊥ 2 2 2
y4 ⊥ ⊥ > >

Round-robin iteration. Initialization
with ⊥. Fixed point reached after
three rounds. Precision loss at φs
because we could not exclude
unreachable code.

7

Conditional Constant Propagation on SSA
called sparse conditional constant propagation (SCCP) [Wegman et al. 1991]

� Consider control flow as well. Perform two analysis in parallel

� Cooperation between two domains:

D := Vars → Z>⊥ Blocks→ C := {d, r}

� d = dead code, r = reachable code

� Two transfer functions per program point i :
fi : D× C→ D for constant propagation
gi : D× C→ C for reachability

� Solve system of equations

x w
⊔
fi (x , y)

y w
⊔
gi (x , y)

x ∈ D, y ∈ C

8

Example

A : x1 ← 1

B : y1 ← 1

C :
x2 ← φ(x1, x5)
y2 ← φ(y1, y4)

D : true(y2 = 1) E : false(y2 = 1)

F :
x4 ← φ(x2, x3)
x5 ← 2− x4

G : x3 ← 2

H : true(x5 = 1) I : false(x5 = 1)

J : y4 ← φ(y2, y3) K : y3 ← 2

L : true(?) M : false(?)

N : print(x5)

0 1 2
x1 ⊥ 1 1
y1 ⊥ 1 1
x2 ⊥ 1 1
y2 ⊥ 1 1
x3 ⊥ 2 2
x4 ⊥ 1 1
x5 ⊥ 1 1
y3 ⊥ 2 2
A r r r

B d r r

C d r r

D d r r

E d d d

F d r r

G d d d

H d r r

I d d d

J d r r

K d d d

L d r r

M d r r

N d r r

Round-robin interation. Each column shows the value of x ∈ D
(upper rows) and y ∈ C (lower rows) in a single iteration of the
fixpoint algorithm. Initial values are ⊥ and d. Root node A
initialized with r. Fixed point reached after one round. Can
prove code dead in cooperation with constant propagation
information.

9

Transfer Functions

� For constant propagation (functions fi)

J` : x ← e; K]D,C := D[x ← JeK]D]
J` : x ← M[e]; K]D,C := D[x ← >]

J` : x0 ← φ(x1, . . . , xn)K]D,C := D[x0 7→
⊔
X]

X := {xi | C (pred(`, i)) = r}
J·K]D,C := D

� For reachability (functions gi)

J` : true(e)K]D,C := C

[
` 7→

{
d JeK]D v 0

r otherwise

]

J` : false(e)K]D,C := C

[
` 7→

{
r 0 v JeK]D
d otherwise

]
J·K]D,C := C

10

Where to place φ-functions?
Cytron et al.: Efficiently computing static single assignment form and the control
dependence graph, TOPLAS 1991

� φ-functions have to be placed such that

1. SSA program P ′ has the same semantics as original program P
2. Every variable has exactly one program point where it is defined

� Observation:

x1 ← . . . x2 ← . . .

y ← x? + 1

� First point reached by two different definitions of (non-SSA) variable
has to contain a φ-function

� In the SSA-form program, every use is reached by a single unique
definition

11

Join Points

Definition

Two paths p : X0
∗→ Xj and q : Y0

∗→ Yk converge at a program point Z if

1. X0 6= Y0

2. Z = Xj = Yk

3. Xj ′ = Yk ′ =⇒ j = j ′ ∨ k = k ′

� A program point Z needs a φ-function for variable a, if it is the
convergence point of two program points X0 and Y0 where each is a
definition of a

� Formally: J(S) := {Z | X ,Y ∈ S converge at Z}.

� J(defs(a)) is the set of program points where φ-functions have to be
placed for a

� How to compute join points efficiently?

12

Dominance

� Every SSA variable has a unique program point where it is defined

� The definition of a SSA variable dominates all its (non-φ) uses

Definition (Dominance)

A node X in the CFG dominates a node Y if every path from entry to Y
contains X . Write X ≥ Y .

� Dominance is a partial order

� Dominance is a tree order: For every X ,Y ,Z with X ≥ Z and Y ≥ Z
holds X ≥ Y or Y ≥ X

� Strict dominance: X > Y := X ≥ Y ∧ X 6= Y

� Immediate/direct dominator: idom(Z) = X with
X > Z ∧ @Y : X > Y > Z

13

Dominance Frontiers
Efficiently computing SSA. . . [Cytron et al. 1991]

Definition (Dominance Frontier)

DF (X) = {Y | X 6> Y ∧ (∃P predecessor of Y : X ≥ P}

� DF is lifted to sets: DF (S) =
⋃

X∈S DF (X).

� DF+(S) is the least fixed point X of F (X) = DF (S ∪ X)

� Theorem:
DF+(X) = J(X)

� Proof Sketch:
1. Show that for every path p : X

∗→ Z there is a node in {X} ∪ DF+(X)
on p that dominates Z

2. Show that the convergence point Z of two paths X
∗→ Z ,Y

∗→ Z is
contained in DF+(X) ∪ DF+(Y)

3. Using this, we can show that J(S) ⊆ DF+(S)
4. Show DF (S) ⊆ J(S) for entry ∈ S
5. Using induction on DF i show that DF+(S) ⊆ J(S)

14

Lemma 1

For any nonempty path p : X →+ Z there is a node
X ′ ∈ {X} ∪DF+({X}) on p that dominates Z . If X dominates every node
on p, then X ′ = X (1) else X ′ ∈ DF+({X}) (2).

Proof:
Assume X does not dominate every node on p (case 2), else case 1 holds. Then,
there is a first node Xj that is not dominated by X . Its predecessor Xj−1 is
dominated by X . Therefore, Xj ∈ DF ({X}) and DF+({X}) 6= ∅.
We showed that there a node in DF+({X}). Now, consider the last node
XJ ∈ DF+({X}) on p. Assume XJ does not dominate Z . Then, there is node Xk

further on p that is not dominated by XJ . Hence, Xk ∈ DF ({Xj}) ⊆ DF+({X})
which contradicts the choice of XJ .

15

Lemma 2

Consider two CFG nodes X 6= Y ,Z and two paths p : X →+ Z and
q : Y →+ Z that converge at Z . Then, Z ∈ DF+({X}) ∪ DF+({Y }).

Proof:
Consider the nodes X ′ and Y ′ we get from Lemma 1. Because X ′ and Y ′

dominate Z , X ′ dominates Y ′ or vice versa. Wlog, consider Y ′ ≥ X ′. Then, all
paths from Y ′ to Z go through X ′, hence Z = X ′.

Now consider the two cases of Lemma 1:
(2) X 6= X ′. Then X ′ = Z ∈ DF+({X}) which proves Lemma 2.
(1) X = X ′ = Z and X dominates every node on p. Because X does not
dominate itself strictly, it is in its own dominance frontier: X ∈ DF+({X}).

16

Putting It Together

� Lemma 2 shows that J(S) ⊆ DF+(S)

� By a simple argument, one can show that DF (S ∪ {r}) ⊆ J(S) for all
sets of nodes S where r is the root of the CFG

� By induction, one shows that DF i (S) ⊆ J(S) for all i . Note that
J(J(S)) = J(S).

� Hence: J(S) = DF+(S)

17

Dominance Frontiers

Definition (Dominance Frontier)

DF (X) = {Y | X 6> Y ∧ (∃Z predecessor of Y : X ≥ Z}

� Can be efficiently computed by a bottom up traversal over the
dominance tree:

1. Each CF-successor Z of X is either dominated by X or not
2. if not, it is in the dominance frontier of X
3. if yes, look at the dominance frontier of Z : All Y ∈ DF (Z) not

dominated by X are also in DF (X)

DF (X) = {Y successor of X | X 6> Y }

∪
⋃

X=idom(Z)

{Y ∈ DF (Z) | X 6≥ Y }

18

SSA Construction
Cytron et al.

1. Compute dominance tree

2. Compute iterated dominance frontiers DF+(X) for all definitions of
each variable

3. Rename variables

� Every use takes lowest definition in the dominance tree
� Note that φ-function uses happen at the end of the predecessors
� First lemma of proof sketch guarantees that this definition is available

19

