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Partial Orders

Let P be a set. A binary relation ≤ on P is a partial order iff it is:

1 reflexive: (∀x ∈ P) x ≤ x

2 transitive: (∀x , y , z ∈ P) x ≤ y ∧ y ≤ z =⇒ x ≤ z

3 antisymmetric: (∀x , y ∈ P) x ≤ y ∧ y ≤ x =⇒ x = y

An element ⊥ with ⊥ ≤ x for all x ∈ P is called bottom element. It is
unique. Analogously, > is called top element, if > ≥ x for all x ∈ P.
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Duality

Let P an ordered set. The dual PD of P is obtained by defining x ≤ y in
PD whenever y ≤ x in P.

For every statement Φ about P there is a dual statement ΦD about PD . It
is obtained from P by exchanging ≤ by ≥.

If Φ is true for all ordered sets, ΦD is also true for all ordered sets.
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Hasse Diagrams

A partial order (P,≤) is typically visualized by a
Hasse diagram:

Elements of P are points in the plane

If x ≤ z , then z is drawn above x .

If x ≤ z , and there is no y with x ≤ y ≤ z ,
then x and z are connected by a line

{−, 0,+}

{−,+}{−, 0} {0,+}

{0}{−} {+}

∅

The Hasse diagram of the dual of P is obtained by “turning” the one of P
by 180◦
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Upper and Lower Bounds

Let (P,≤) be a partial ordered set and let S ⊆ P. An element x ∈ P is a
lower bound of S , if x ≤ s for all s ∈ S . Let

S` = {x ∈ P | (∀s ∈ S) x ≤ s}

be the set of all lower bounds of the set S . Dually:

Su = {x ∈ P | (∀s ∈ S) x ≥ s}

Note: ∅u = ∅` = P.

If S` has a greatest element, this element is called the greatest lower
bound and is written inf S . (Dually for least upper bound and supS .) The
greatest lower bound only exists, iff there is a x ∈ P such that

(∀y ∈ P) (((∀s ∈ S) s ≥ y) ⇐⇒ x ≥ y)
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Complete Partial Orders

A non-empty subset S ⊆ P is directed if for every x , y ∈ S there is z ∈ S
such that z ∈ {x , y}u.

P is a complete partial order (CPO) if every directed set M has a least
upper bound.

We use the notation
⊔
M to indicate the least upper bound of a directed

set.
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Lattices
The order-theoretic definition

Let P be an ordered set.

If sup{x , y} and inf{x , y} exist for every pair x , y ∈ P
then P is called a lattice.

If for every S ⊆ P, sup S and inf S exist,
then P is called a complete lattice.
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The Connecting Lemma

Let L be a lattice and let a, b ∈ L. The following statements are equivalent:

1 a ≤ b

2 inf{a, b} = a

3 sup{a, b} = b
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Lattices
The algebraic definition

We now view L as an algebraic structure (L;∨,∧) with two binary
operators

x ∨ y := sup{x , y} x ∧ y := inf{x , y}

Theorem: ∨ and ∧ satisfy for all a, b, c ∈ L:

(L1) (a ∨ b) ∨ c = a ∨ (b ∨ c) associativity

(L1)D (a ∧ b) ∧ c = a ∧ (b ∧ c)
(L2) a ∨ b = b ∨ a commutativity

(L2)D a ∧ b = b ∧ a
(L3) a ∨ a = a idempotency

(L3)D a ∧ a = a
(L4) a ∨ (a ∧ b) = a absorption

(L4)D a ∧ (a ∨ b) = a

Proof: (L2) is immediate because sup{x , y} = sup{y , x}. (L3), (L4) follow
from the connection lemma. (L1) exercise. The dual laws come by duality.
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Lattices
From the algebraic to the order-theoretic definition

Let (L;∨,∧) be a set with two operators satisfying
(L1)–(L4) and (L1)D–(L4)D

Theorem:

1 Define a ≤ b on L if a ∨ b = b. Then, ≤ is a partial oder

2 (L;≤) is a lattice with

sup{a, b} = a ∨ b and inf{a, b} = a ∧ b

Proof:

1 reflexive by (L3), antisymmetric by (L2), transitive by (L1)

2 First show that a ∨ b ∈ {a, b}u then show that
d ∈ {a, b}u =⇒ (a ∨ b) ≤ d . Easy by applying the (Li) to the
suitable premises (Exercise).
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Functions on Partial Orders

Let P be a partial order. A function f : P → P is

monotone if for all x , y ∈ P:

x ≤ y =⇒ f (x) ≤ f (y)

continuous if for each directed subset M ⊆ L:

f (
⊔

M) =
⊔

f (M)

Lemma: Continous functions are monotone.
Proof: Exercise
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Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and f : L→ L be monotone. Then∧
{x ∈ L | f (x) ≤ x}

is the least fixpoint of f . (The dual holds analogously.)

Proof: Let R := {x ∈ L | f (x) ≤ x} be the set of elements of which f is
reductive. Let x ∈ R. Consider z =

∧
R. z exists, because L is complete.

z ≤ x because z is a lower bound of x . By monotonicity, f (z) ≤ f (x).
Because x ∈ R, f (z) ≤ x . Thus, f (z) is also a lower bound of R. Thus,
f (z) ≤ y for all y ∈ R. Because z is the greatest lower bound of R,
f (z) ≤ z , thus z ∈ R. By monotonicity, f (f (z)) ≤ f (z). Hence, f (z) ∈ R.
Because z is a lower bound of R, z ≤ f (z) and z = f (z).
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Finite Lattices Are Complete

Associativity allows us to write sequences of joins unambiguously without
brackets. One can show (by induction) that∨

{a1, . . . , an} = a1 ∨ · · · ∨ an

for {a1, . . . , an} ∈ L, n ≥ 2. Thus, for any finite, non-empty subset F ∈ L,∨
and

∧
exist.

Thus, every finite lattice bounded (has a greatest and least element) with

> =
∨

L ⊥ =
∧

L

Finally, becuase finite lattices have ⊥ (>), it exists
∨
∅ (

∧
∅):

⊥ =
∨
∅ > =

∧
∅

Hence, finite lattices are complete.
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Fixpoint by Iteration (Kleene)

Let L be a complete lattice, f : L→ L a monotone function,
and α :=

⊔
i≥0 f

i (⊥).

1 If α is a fixpoint, it is the least fixpoint.

2 If f is continuous, α is a fixpoint.

Proof: First, α exists because L is a lattice.

1 Assume β = f (β) is a fixpoint of f . By definition, ⊥ ≤ β and
because f is monotone, for all i : f i (⊥) ≤ f i (β) = β. Hence, β is an
upper bound on M = {⊥, f (⊥), . . . }. Because α is the least upper
bound of M, we have α ≤ β. Hence, if α is a fixpoint, it is the least.

2 f (α) = f (
⊔

i≥0 f
i (⊥)) =

⊔
i≥0 f (f i (⊥)) f continuous

=
⊔

i≥1 f
i (⊥)

=
⊔

i≥0 f
i (⊥) because ∀i .⊥ ≤ f i (⊥)

= α

Remark: The theorem also holds for complete partial orders in which only every ascending chain
must have a least upper bound.
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Fixpoints in Complete Lattices

>

⊥

MaxFP

MinFP

f (x) ≤ x

x = f (x)

x ≤ f (x)
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