Lattices

Slides follow Davey and Priestley: Introduction to Lattices and Order

Sebastian Hack
hack@cs.uni-saarland.de

28. Oktober 2014

Partial Orders

Let P be a set. A binary relation \leq on P is a partial order iff it is:
1 reflexive: $(\forall x \in P) x \leq x$
2 transitive: $(\forall x, y, z \in P) x \leq y \wedge y \leq z \Longrightarrow x \leq z$
3 antisymmetric: $(\forall x, y \in P) x \leq y \wedge y \leq x \Longrightarrow x=y$

An element \perp with $\perp \leq x$ for all $x \in P$ is called bottom element. It is unique. Analogously, T is called top element, if $T \geq x$ for all $x \in P$.

Duality

Let P an ordered set. The dual P^{D} of P is obtained by defining $x \leq y$ in P^{D} whenever $y \leq x$ in P.

For every statement Φ about P there is a dual statement Φ^{D} about P^{D}. It is obtained from P by exchanging \leq by \geq.

If Φ is true for all ordered sets, Φ^{D} is also true for all ordered sets.

Hasse Diagrams

A partial order (P, \leq) is typically visualized by a Hasse diagram:

- Elements of P are points in the plane
- If $x \leq z$, then z is drawn above x.
- If $x \leq z$, and there is no y with $x \leq y \leq z$, then x and z are connected by a line

The Hasse diagram of the dual of P is obtained by "turning" the one of P by 180°

Upper and Lower Bounds

Let (P, \leq) be a partial ordered set and let $S \subseteq P$. An element $x \in P$ is a lower bound of S, if $x \leq s$ for all $s \in S$. Let

$$
S^{\ell}=\{x \in P \mid(\forall s \in S) x \leq s\}
$$

be the set of all lower bounds of the set S. Dually:

$$
S^{u}=\{x \in P \mid(\forall s \in S) x \geq s\}
$$

Note: $\emptyset^{u}=\emptyset^{\ell}=P$.
If S^{ℓ} has a greatest element, this element is called the greatest lower bound and is written $\inf S$. (Dually for least upper bound and sup S.) The greatest lower bound only exists, iff there is a $x \in P$ such that

$$
(\forall y \in P)(((\forall s \in S) s \geq y) \Longleftrightarrow x \geq y)
$$

Complete Partial Orders

A non-empty subset $S \subseteq P$ is directed if for every $x, y \in S$ there is $z \in S$ such that $z \in\{x, y\}^{u}$.
P is a complete partial order (CPO) if every directed set M has a least upper bound.

We use the notation $\bigsqcup M$ to indicate the least upper bound of a directed set.

Lattices

The order-theoretic definition

Let P be an ordered set.
■ If $\sup \{x, y\}$ and $\inf \{x, y\}$ exist for every pair $x, y \in P$ then P is called a lattice.

- If for every $S \subseteq P$, sup S and $\inf S$ exist, then P is called a complete lattice.

The Connecting Lemma

Let L be a lattice and let $a, b \in L$. The following statements are equivalent:
$1 a \leq b$
$2 \inf \{a, b\}=a$
$3 \sup \{a, b\}=b$

Lattices

The algebraic definition

We now view L as an algebraic structure $(L ; \vee, \wedge)$ with two binary operators

$$
x \vee y:=\sup \{x, y\} \quad x \wedge y:=\inf \{x, y\}
$$

Theorem: \vee and \wedge satisfy for all $a, b, c \in L$:
(L1) $\quad(a \vee b) \vee c=a \vee(b \vee c) \quad$ associativity
$(L 1)^{D}(a \wedge b) \wedge c=a \wedge(b \wedge c)$
(L2) $a \vee b=b \vee a$
$(L 2)^{D} a \wedge b=b \wedge a$
(L3) $a \vee a=a$
$(L 3)^{D} a \wedge a=a$
(L4) $a \vee(a \wedge b)=a$
absorption
$(L 4)^{D} a \wedge(a \vee b)=a$
commutativity
idempotency

Lattices

The algebraic definition

We now view L as an algebraic structure $(L ; \vee, \wedge)$ with two binary operators

$$
x \vee y:=\sup \{x, y\} \quad x \wedge y:=\inf \{x, y\}
$$

Theorem: \vee and \wedge satisfy for all $a, b, c \in L$:
(L1) $\quad(a \vee b) \vee c=a \vee(b \vee c) \quad$ associativity
$(L 1)^{D}(a \wedge b) \wedge c=a \wedge(b \wedge c)$
(L2) $a \vee b=b \vee a$
$(L 2)^{D} a \wedge b=b \wedge a$
(L3) $a \vee a=a$
$(L 3)^{D} a \wedge a=a$
(L4) $a \vee(a \wedge b)=a$
absorption
$(L 4)^{D} a \wedge(a \vee b)=a$
idempotency

Proof: (L2) is immediate because $\sup \{x, y\}=\sup \{y, x\}$. (L3), (L4) follow from the connection lemma. (L1) exercise. The dual laws come by duality.

Lattices

From the algebraic to the order-theoretic definition
Let $(L ; \vee, \wedge)$ be a set with two operators satisfying $(L 1)-(L 4)$ and $(L 1)^{D}-(L 4)^{D}$

Theorem:
1 Define $a \leq b$ on L if $a \vee b=b$. Then, \leq is a partial oder
$2(L ; \leq)$ is a lattice with

$$
\sup \{a, b\}=a \vee b \quad \text { and } \quad \inf \{a, b\}=a \wedge b
$$

Lattices

From the algebraic to the order-theoretic definition
Let $(L ; \vee, \wedge)$ be a set with two operators satisfying $(L 1)-(L 4)$ and $(L 1)^{D}-(L 4)^{D}$

Theorem:
1 Define $a \leq b$ on L if $a \vee b=b$. Then, \leq is a partial oder
$2(L ; \leq)$ is a lattice with

$$
\sup \{a, b\}=a \vee b \quad \text { and } \quad \inf \{a, b\}=a \wedge b
$$

Proof:
1 reflexive by (L3), antisymmetric by (L2), transitive by (L1)
2 First show that $a \vee b \in\{a, b\}^{u}$ then show that $d \in\{a, b\}^{u} \Longrightarrow(a \vee b) \leq d$. Easy by applying the $(L i)$ to the suitable premises (Exercise).

Functions on Partial Orders

Let P be a partial order. A function $f: P \rightarrow P$ is

- monotone if for all $x, y \in P$:

$$
x \leq y \Longrightarrow f(x) \leq f(y)
$$

- continuous if for each directed subset $M \subseteq L$:

$$
f(\bigsqcup M)=\bigsqcup f(M)
$$

Lemma: Continous functions are monotone.
Proof: Exercise

Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and $f: L \rightarrow L$ be monotone. Then

$$
\bigwedge\{x \in L \mid f(x) \leq x\}
$$

is the least fixpoint of f. (The dual holds analogously.)

Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and $f: L \rightarrow L$ be monotone. Then

$$
\bigwedge\{x \in L \mid f(x) \leq x\}
$$

is the least fixpoint of f. (The dual holds analogously.)

Proof: Let $R:=\{x \in L \mid f(x) \leq x\}$ be the set of elements of which f is reductive. Let $x \in R$. Consider $z=\bigwedge R$. z exists, because L is complete. $z \leq x$ because z is a lower bound of x. By monotonicity, $f(z) \leq f(x)$. Because $x \in R, f(z) \leq x$. Thus, $f(z)$ is also a lower bound of R. Thus, $f(z) \leq y$ for all $y \in R$. Because z is the greatest lower bound of R, $f(z) \leq z$, thus $z \in R$. By monotonicity, $f(f(z)) \leq f(z)$. Hence, $f(z) \in R$. Because z is a lower bound of $R, z \leq f(z)$ and $z=f(z)$.

Finite Lattices Are Complete

Associativity allows us to write sequences of joins unambiguously without brackets. One can show (by induction) that

$$
\bigvee\left\{a_{1}, \ldots, a_{n}\right\}=a_{1} \vee \cdots \vee a_{n}
$$

for $\left\{a_{1}, \ldots, a_{n}\right\} \in L, n \geq 2$. Thus, for any finite, non-empty subset $F \in L$, \bigvee and \bigwedge exist.

Thus, every finite lattice bounded (has a greatest and least element) with

$$
\top=\bigvee L \quad \perp=\bigwedge L
$$

Finally, becuase finite lattices have $\perp(\top)$, it exists $\bigvee \emptyset(\bigwedge \emptyset)$:

$$
\perp=\bigvee \emptyset \quad \top=\bigwedge \emptyset
$$

Hence, finite lattices are complete.

Fixpoint by Iteration (Kleene)

Let L be a complete lattice, $f: L \rightarrow L$ a monotone function, and $\alpha:=\bigsqcup_{i \geq 0} f^{i}(\perp)$.
1 If α is a fixpoint, it is the least fixpoint.
2 If f is continuous, α is a fixpoint.

Fixpoint by Iteration (Kleene)

Let L be a complete lattice, $f: L \rightarrow L$ a monotone function, and $\alpha:=\bigsqcup_{i \geq 0} f^{i}(\perp)$.

1 If α is a fixpoint, it is the least fixpoint.
2 If f is continuous, α is a fixpoint.
Proof: First, α exists because L is a lattice.
1 Assume $\beta=f(\beta)$ is a fixpoint of f. By definition, $\perp \leq \beta$ and because f is monotone, for all $i: f^{i}(\perp) \leq f^{i}(\beta)=\beta$. Hence, β is an upper bound on $M=\{\perp, f(\perp), \ldots\}$. Because α is the least upper bound of M, we have $\alpha \leq \beta$. Hence, if α is a fixpoint, it is the least.
$2 f(\alpha)=f\left(\bigsqcup_{i \geq 0} f^{i}(\perp)\right)=\bigsqcup_{i \geq 0} f\left(f^{i}(\perp)\right) f$ continuous
$=\bigsqcup_{i \geq 1} f^{i}(\perp)$
$=\bigsqcup_{i \geq 0} f^{i}(\perp) \quad$ because $\forall i . \perp \leq f^{i}(\perp)$
$=\alpha$
Remark: The theorem also holds for complete partial orders in which only every ascending chain must have a least upper bound.

Fixpoints in Complete Lattices

