Sebastian Hack, Christian Hammer, Jan Reineke Saarland University

Static Program Analysis Introduction

Winter Semester 2014

Slides based on:

- H. Seidl, R. Wilhelm, S. Hack: Compiler Design, Volume 3, Analysis and Transformation, Springer Verlag, 2012
- F. Nielson, H. Riis Nielson, C. Hankin: Principles of Program Analysis, Springer Verlag, 1999
- R. Wilhelm, B. Wachter: Abstract Interpretation with Applications to Timing Validation. CAV 2008: 22-36
- Helmut Seidl's slides

A Short History of Static Program Analysis

- Early high-level programming languages were implemented on very small and very slow machines.
- Compilers needed to generate executables that were extremely efficient in space and time.
- Compiler writers invented efficiency-increasing program transformations, wrongly called optimizing transformations.
- Transformations must not change the semantics of programs.
- Enabling conditions guaranteed semantics preservation.
- Enabling conditions were checked by static analysis of programs.

Theoretical Foundations of Static Program Analysis

- Theoretical foundations for the solution of recursive equations: Kleene (30s), Tarski (1955)
- Gary Kildall (1972) clarified the lattice-theoretic foundation of data-flow analysis.
- Patrick Cousot (1974) established the relation to the programming-language semantics.

Static Program Analysis as a Verification Method

- Automatic method to derive invariants about program behavior, answers questions about program behavior:
- will index always be within bounds at program point p ?
- will memory access at p always hit the cache?
- answers of sound static analysis are correct, but approximate: don't know is a valid answer!
- analyses proved correct wrt. language semantics,

1 Introduction

a simple imperative programming language with:

- variables
- $R=e$;
- $R=M[e] ;$
- $M\left[e_{1}\right]=e_{2} ;$
- if $(e) s_{1}$ else s_{2}
- goto L;
registers
assignments
loads
stores
conditional branching
no loops

An intermediate language into which (almost) everything can be translated. In particular, no procedures. So, only intra-procedural analyses!

2 Example - Rules-of-Sign Analysis

Problem: Determine at each program point the sign of the values of all variables of numeric type.

Example program:

```
1: x = 0;
2: y = 1;
3: while (y > 0) do
4: y = y + x;
5: x = x + (-1);
```

Program representation as control-flow graphs

We need the following ingredients:

- a set of information elements, each a set of possible signs,
- a partial order, " \sqsubseteq ", on these elements, specifying the "relative strength" of two information elements,
- these together form the abstract domain, a lattice,
- functions describing how signs of variables change by the execution of a statement, abstract edge effects,
- these need an abstract arithmetic, an arithmetic on signs.

We construct the abstract domain for single variables starting with the lattice Signs $=2^{\{-, 0,+\}}$ with the relation " $\sqsubseteq "=" \subseteq$ ".

The analysis should "bind" program variables to elements in Signs.
So, the abstract domain is $\mathbb{D}=(\text { Vars } \rightarrow \text { Signs })_{\perp}$, a Sign-environment.
$\perp \in \mathbb{D}$ is the function mapping all arguments to $\}$.
The partial order on \mathbb{D} is $\quad D_{1} \sqsubseteq D_{2} \quad$ iff

$$
\begin{array}{ll}
D_{1}=\perp & \text { or } \\
D_{1} x \subseteq D_{2} x & (x \in \text { Vars })
\end{array}
$$

Intuition?

The analysis should "bind" program variables to elements in Signs.
So, the abstract domain is $\mathbb{D}=(\text { Vars } \rightarrow \text { Signs })_{\perp}$. a Sign-environment.
$\perp \in \mathbb{D}$ is the function mapping all arguments to $\}$.
The partial order on \mathbb{D} is $\quad D_{1} \sqsubseteq D_{2} \quad$ iff

$$
\begin{array}{ll}
D_{1}=\perp & \text { or } \\
D_{1} x \subseteq D_{2} x & (x \in \text { Vars })
\end{array}
$$

Intuition?
D_{1} is at least as precise as D_{2} since D_{2} admits at least as many signs as D_{1}

How did we analyze the program?

In particular, how did we walk the lattice for y at program point 5?

How is a solution found?
Iterating until a fixed-point is reached

| 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Idea:

- We want to determine the sign of the values of expressions.

Idea:

- We want to determine the sign of the values of expressions.
- For some sub-expressions, the analysis may yield $\quad\{+,-, 0\}$, which means, it couldn't find out.

Idea:

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield $\quad\{+,-, 0\}$, which means, it couldn't find out.
- We replace the concrete operators $\quad \square$ working on values by abstract operators \square^{\sharp} working on signs:

Idea:

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield $\quad\{+,-, 0\}$, which means, it couldn't find out.
- We replace the concrete operators $\quad \square$ working on values by abstract operators \square^{\sharp} working on signs:
- The abstract operators allow to define an abstract evaluation of expressions:

$$
\llbracket e \rrbracket^{\sharp}:(\text { Vars } \rightarrow \text { Signs }) \rightarrow \text { Signs }
$$

Determining the sign of expressions in a Sign-environment works as follows:

$$
\begin{array}{ll}
\llbracket c \rrbracket^{\sharp} D & = \begin{cases}\{+\} & \text { if } \mathrm{c}>0 \\
\{-\} & \text { if } \mathrm{c}<0 \\
\{0\} & \text { if } \mathrm{c}=0\end{cases} \\
\llbracket v \rrbracket^{\sharp} & =D(v) \\
\llbracket e_{1} \square e_{2} \rrbracket^{\sharp} D & =\llbracket e_{1} \rrbracket^{\sharp} D \square^{\sharp} \llbracket e_{2} \rrbracket^{\sharp} D \\
\llbracket \square e \rrbracket^{\sharp} D & =\square^{\sharp} \llbracket e \rrbracket^{\sharp} D
\end{array}
$$

Abstract operators working on signs (Addition)

$+\#$	$\{0\}$	$\{+\}$	$\{-\}$	$\{-, 0\}$	$\{-,+\}$	$\{0,+\}$
$\{0\}$	$\{0\}$	$\{+\}$				
$\{+\}$						
$\{-\}$						
$\{-, 0\}$						
$\{-,+\}$						
$\{0,+\}$						
$\{-, 0,+\}$	$\{-, 0,+\}$					

Abstract operators working on signs (Multiplication)

$\times \#$	$\{0\}$	$\{+\}$	$\{-\}$	$\{-, 0\}$	$\{-,+\}$	$\{0,+\}$
$\{0\}$	$\{0\}$	$\{0\}$				
$\{+\}$						
$\{-\}$						
$\{-, 0\}$						
$\{-,+\}$						
$\{0,+\}$						
$\{-, 0,+\}$	$\{0\}$					

Abstract operators working on signs (unary minus)

$-\#$	$\{0\}$	$\{+\}$	$\{-\}$	$\{-, 0\}$	$\{-,+\}$	$\{0,+\}$	$\{-, 0,+\}$
	$\{0\}$	$\{-\}$	$\{+\}$	$\{+, 0\}$	$\{-,+\}$	$\{0,-\}$	$\{-, 0,+\}$

Working an example:

$$
D=\{x \mapsto\{+\}, y \mapsto\{+\}\}
$$

$$
\begin{aligned}
\llbracket x+7 \rrbracket^{\sharp} D & =\llbracket x \rrbracket^{\sharp} D+^{\sharp} \llbracket 7 \rrbracket^{\sharp} D \\
& =\{+\}+^{\sharp}\{+\} \\
& =\{+\} \\
\llbracket x+(-y) \rrbracket^{\sharp} D & =\{+\}+^{\sharp}\left(-\sharp \llbracket y \rrbracket^{\sharp} D\right) \\
& =\{+\}+^{\sharp}(-\sharp\{+\}) \\
& =\{+\}+^{\sharp}\{-\} \\
& =\{+,-, 0\}
\end{aligned}
$$

$\llbracket l a b \rrbracket$ is the abstract edge effects associated with edge k.
It depends only on the label lab:

$$
\begin{array}{ll}
\llbracket ; \rrbracket^{\sharp} D & = \\
\llbracket \operatorname{true}(e) \rrbracket^{\sharp} D & = \\
\llbracket \text { false }(e) \rrbracket^{\sharp} D & = \\
\llbracket x=e ; \rrbracket^{\sharp} D & = \\
\llbracket x=M[e\rfloor ; \rrbracket^{\sharp} D= & D \oplus\left\{x \mapsto \llbracket e \rrbracket^{\sharp} D\right\} \\
\llbracket x \mapsto\{x \mapsto\{+,-, 0\}\} \\
\llbracket M\left[e_{1}\right]=e_{2} ; \rrbracket^{\sharp} D= & D \\
& \\
& \ldots \text { whenever } \quad D \neq \perp
\end{array}
$$

These edge effects can be composed to the effect of a path $\pi=k_{1} \ldots k_{r}$:

$$
\llbracket \pi \rrbracket^{\sharp}=\llbracket k_{r} \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_{1} \rrbracket^{\sharp}
$$

Consider a program node v :
$\rightarrow \quad$ For every path π from program entry start to v the analysis should determine for each program variable x the set of all signs that the values of x may have at v as a result of executing π.
$\rightarrow \quad$ Initially at program start, no information about signs is available.
$\rightarrow \quad$ The analysis computes a superset of the set of signs as safe information.
\Longrightarrow For each node v, we need the set:

$$
\mathcal{S}[v]=\bigcup\left\{\llbracket \pi \rrbracket^{\sharp} \perp \mid \pi: \text { start } \rightarrow^{*} v\right\}
$$

Question:

How do we compute $\mathcal{S}[u]$ for every program point u ?

Question:

How can we compute $\mathcal{S}[u]$ for every program point u ?

Collect all constraints on the values of $\mathcal{S}[u]$ into a system of constraints:

$$
\begin{array}{lll}
\mathcal{S}[\text { start }] & \supseteq \perp & \\
\mathcal{S}[v] & \supseteq \llbracket k \rrbracket^{\sharp}(\mathcal{S}[u]) & k=\left(u,_{-}, v\right) \quad \text { edge }
\end{array}
$$

Why \supseteq ?

Wanted:

- a least solution (why least?)
- an algorithm that computes this solution

Example:

$$
\begin{aligned}
\mathcal{S}[0] & \supseteq \\
\mathcal{S}[1] & \supseteq \mathcal{S}[0] \oplus\{x \mapsto\{0\}\} \\
\mathcal{S}[2] & \supseteq \mathcal{S}[1] \oplus\{y \mapsto\{+\}\} \\
\mathcal{S}[2] & \supseteq \mathcal{S}[5] \oplus\left\{x \mapsto \llbracket x+(-1) \rrbracket^{\sharp} \mathcal{S}[5]\right\} \\
\mathcal{S}[3] & \supseteq \mathcal{S}[2] \\
\mathcal{S}[4] & \supseteq \mathcal{S}[2] \\
\mathcal{S}[5] & \supseteq \mathcal{S}[4] \oplus\left\{y \mapsto \llbracket y+x \rrbracket^{\sharp} \mathcal{S}[4]\right\}
\end{aligned}
$$

