Sebastian Hack, Christian Hammer, Jan Reineke Saarland University

Static Program Analysis Introduction

Winter Semester 2014

Slides based on:

- H. Seidl, R. Wilhelm, S. Hack: Compiler Design, Volume 3, Analysis and Transformation, Springer Verlag, 2012
- F. Nielson, H. Riis Nielson, C. Hankin: Principles of Program Analysis, Springer Verlag, 1999
- R. Wilhelm, B. Wachter: Abstract Interpretation with Applications to Timing Validation. CAV 2008: 22-36
- Helmut Seidl's slides

A Short History of Static Program Analysis

- Early high-level programming languages were implemented on very small and very slow machines.
- Compilers needed to generate executables that were extremely efficient in space and time.
- Compiler writers invented efficiency-increasing program transformations, wrongly called optimizing transformations.
- Transformations must not change the semantics of programs.
- Enabling conditions guaranteed semantics preservation.
- Enabling conditions were checked by static analysis of programs.

Theoretical Foundations of Static Program Analysis

- Theoretical foundations for the solution of recursive equations: Kleene (30s), Tarski (1955)
- Gary Kildall (1972) clarified the lattice-theoretic foundation of data-flow analysis.
- Patrick Cousot (1974) established the relation to the programming-language semantics.

Static Program Analysis as a Verification Method

- Automatic method to derive invariants about program behavior, answers questions about program behavior:
 - will index always be within bounds at program point p?
 - will memory access at *p* always hit the cache?
- answers of sound static analysis are correct, but approximate: don't know is a valid answer!
- analyses proved correct wrt. language semantics,

1 Introduction

a simple imperative programming language with:

• variables	//	registers
• $R = e;$	//	assignments
• $R = M[e];$	//	loads
• $M[e_1] = e_2;$	//	stores
• if $(e) s_1$ else s_2	//	conditional branching
• goto $L;$	//	no loops

An intermediate language into which (almost) everything can be translated. In particular, no procedures. So, only intra-procedural analyses!

2 Example — Rules-of-Sign Analysis

Problem: Determine at each program point the sign of the values of all variables of numeric type.

Example program:

Program representation as *control-flow graphs*

We need the following ingredients:

- a set of information elements, each a set of possible signs,
- a partial order, "⊑", on these elements, specifying the "relative strength" of two information elements,
- these together form the abstract domain, a lattice,
- functions describing how signs of variables change by the execution of a statement, abstract edge effects,
- these need an abstract arithmetic, an arithmetic on signs.

We construct the abstract domain for single variables starting with the lattice $Signs = 2^{\{-,0,+\}}$ with the relation " \sqsubseteq " =" \subseteq ".

The analysis should "bind" program variables to elements in Signs. So, the abstract domain is $\mathbb{D} = (Vars \rightarrow Signs)_{\perp}$, a Sign-environment. $\perp \in \mathbb{D}$ is the function mapping all arguments to $\{\}$. The partial order on \mathbb{D} is $D_1 \sqsubseteq D_2$ iff

 $D_1 = \bot \qquad \text{or} \\ D_1 x \subseteq D_2 x \quad (x \in Vars)$

Intuition?

The analysis should "bind" program variables to elements in Signs.

So, the abstract domain is $\mathbb{D} = (Vars \rightarrow Signs)_{\perp}$. a Sign-environment.

 $\perp \in \mathbb{D}$ is the function mapping all arguments to $\{\}$.

The partial order on \mathbb{D} is $D_1 \sqsubseteq D_2$ iff

 $D_1 = \bot \qquad \text{or} \\ D_1 x \subseteq D_2 x \quad (x \in Vars)$

Intuition?

 D_1 is at least as precise as D_2 since D_2 admits at least as many signs as D_1

How did we analyze the program?

In particular, how did we walk the lattice for y at program point 5?

How is a solution found?

Iterating until a fixed-point is reached

	0	- - -	1		2		3		1	4	5
x	y	x	y	x	y	x	y	x	y	x	y
	$\left \begin{array}{c} y \\ y \end{array} \right $										

• We want to determine the sign of the values of expressions.

- We want to determine the sign of the values of expressions.
- For some sub-expressions, the analysis may yield $\{+, -, 0\}$, which means, it couldn't find out.

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield $\{+, -, 0\}$, which means, it couldn't find out.
- We replace the concrete operators □ working on values by abstract operators □[‡] working on signs:

- We want to determine the signs of the values of expressions.
- For some sub-expressions, the analysis may yield $\{+, -, 0\}$, which means, it couldn't find out.
- We replace the concrete operators □ working on values by abstract operators □[‡] working on signs:
- The abstract operators allow to define an abstract evaluation of expressions:

$$\llbracket e \rrbracket^{\sharp} : (Vars \to Signs) \to Signs$$

Determining the sign of expressions in a Sign-environment works as follows:

$$\begin{bmatrix} c \end{bmatrix}^{\sharp} D = \begin{cases} \{+\} & \text{if } c > 0 \\ \{-\} & \text{if } c < 0 \\ \{0\} & \text{if } c = 0 \end{cases}$$
$$\begin{bmatrix} v \end{bmatrix}^{\sharp} = D(v)$$
$$\begin{bmatrix} e_1 \Box e_2 \end{bmatrix}^{\sharp} D = \begin{bmatrix} e_1 \end{bmatrix}^{\sharp} D \Box^{\sharp} \begin{bmatrix} e_2 \end{bmatrix}^{\sharp} D$$
$$\begin{bmatrix} \Box e \end{bmatrix}^{\sharp} D = \Box^{\sharp} \begin{bmatrix} e \end{bmatrix}^{\sharp} D$$

+#	{0}	{+}	{-}	{ - , 0}	{-, +}	$\{0, +\}$	{-, 0, +}
{0}	{0}	{+}					
{+}							
{-}							
$\{-, 0\}$							
{-, +}							
$\{0, +\}$							
{-, 0, +}	{-, 0, +}						

Abstract operators working on signs (Addition)

-				-	-		
×#	{0}	{+}	{-}	{ - , 0}	{-, +}	{0, +}	{-, 0, +}
{0}	{0}	{0}					
{+}							
{-}							
$\{-, 0\}$							
{-, +}							
$\{0, +\}$							
{-, 0, +}	{0}						
Abstract on	Abstract operators working on signs (upary minus)						

Abstract operators working on signs (Multiplication)

Abstract operators working on signs (unary minus)

#	{0}	{+}	{-}	$\{-, 0\}$	{-,+}	{0, +}	{-, 0, +}
	{0}	{-}	{+}	$\{+, 0\}$	{-, +}	{0, -}	{-, 0, +}

Working an example: $D = \{x \mapsto \{+\}, y \mapsto \{+\}\}$

$$\begin{bmatrix} x + 7 \end{bmatrix}^{\sharp} D = \begin{bmatrix} x \end{bmatrix}^{\sharp} D +^{\sharp} \begin{bmatrix} 7 \end{bmatrix}^{\sharp} D$$

= {+} +^{\sharp} {+}
= {+}
$$\begin{bmatrix} x + (-y) \end{bmatrix}^{\sharp} D = \{+\} +^{\sharp} (-^{\sharp} \llbracket y \rrbracket^{\sharp} D)$$

= {+} +^{\sharp} (-^{\sharp} {+})
= {+} +^{\sharp} {-}
= {+, -, 0}

 $[lab]^{\sharp}$ is the abstract edge effects associated with edge k. It depends only on the label *lab*:

$$\llbracket : \rrbracket^{\sharp} D = D$$

$$\llbracket \operatorname{true} (e) \rrbracket^{\sharp} D = D$$

$$\llbracket \operatorname{false} (e) \rrbracket^{\sharp} D = D$$

$$\llbracket x = e : \rrbracket^{\sharp} D = D \oplus \{x \mapsto \llbracket e \rrbracket^{\sharp} D\}$$

$$\llbracket x = M[e] : \rrbracket^{\sharp} D = D \oplus \{x \mapsto \{+, -, 0\}\}$$

$$\llbracket M[e_1] = e_2 : \rrbracket^{\sharp} D = D$$

... whenever $D \neq \bot$

These edge effects can be composed to the effect of a path $\pi = k_1 \dots k_r$:

$$\llbracket \pi \rrbracket^{\sharp} = \llbracket k_r \rrbracket^{\sharp} \circ \ldots \circ \llbracket k_1 \rrbracket^{\sharp}$$

Consider a program node *v*:

- \rightarrow For every path π from program entry *start* to v the analysis should determine for each program variable x the set of all signs that the values of x may have at v as a result of executing π .
- \rightarrow Initially at program start, no information about signs is available.
- \rightarrow The analysis computes a superset of the set of signs as safe information.
- \implies For each node v, we need the set:

 $\mathcal{S}[v] = \bigcup \{ \llbracket \pi \rrbracket^{\sharp} \bot \mid \pi : start \to^{*} v \}$

Question:

How do we compute S[u] for every program point u?

Question:

How can we compute S[u] for every program point u?

Collect all constraints on the values of S[u] into a system of constraints:

$$\begin{array}{ll} \mathcal{S}[start] &\supseteq & \bot \\ \mathcal{S}[v] &\supseteq & \llbracket k \rrbracket^{\sharp} \left(\mathcal{S}[u] \right) & k = (u, _, v) \quad \text{edge} \end{array}$$

$$Why \supseteq?$$

Wanted:

- a least solution (why least?)
- an algorithm that computes this solution

Example:

 $\begin{array}{lll} \mathcal{S}[0] &\supseteq & \bot \\ \mathcal{S}[1] &\supseteq & \mathcal{S}[0] \oplus \{x \mapsto \{0\}\} \\ \mathcal{S}[2] &\supseteq & \mathcal{S}[1] \oplus \{y \mapsto \{+\}\} \\ \mathcal{S}[2] &\supseteq & \mathcal{S}[5] \oplus \{x \mapsto [\![x + (-1)]\!]^{\sharp} \, \mathcal{S}[5]\} \\ \mathcal{S}[3] &\supseteq & \mathcal{S}[2] \\ \mathcal{S}[4] &\supseteq & \mathcal{S}[2] \\ \mathcal{S}[5] &\supseteq & \mathcal{S}[4] \oplus \{y \mapsto [\![y + x]\!]^{\sharp} \, \mathcal{S}[4]\} \end{array}$