
Sebastian Hack, Christian Hammer, Jan Reineke
Saarland University

Static Program Analysis
Introduction

Winter Semester 2014
Slides based on:

• H. Seidl, R. Wilhelm, S. Hack: Compiler Design, Volume 3, Analysis and
Transformation, Springer Verlag, 2012

• F. Nielson, H. Riis Nielson, C. Hankin: Principles of Program Analysis, Springer
Verlag, 1999

• R. Wilhelm, B. Wachter: Abstract Interpretation with Applications to Timing
Validation. CAV 2008: 22-36

• Helmut Seidl’s slides

1



A Short History of Static Program Analysis

• Early high-level programming languages were implemented on very
small and very slow machines.

• Compilers needed to generate executables that were extremely
efficient in space and time.

• Compiler writers invented efficiency-increasing program
transformations, wrongly called optimizing transformations.

• Transformations must not change the semantics of programs.

• Enabling conditions guaranteed semantics preservation.

• Enabling conditions were checked by static analysis of programs.

2



Theoretical Foundations of Static Program Analysis

• Theoretical foundations for the solution of recursive equations:
Kleene (30s), Tarski (1955)

• Gary Kildall (1972) clarified the lattice-theoretic foundation of
data-flow analysis.

• Patrick Cousot (1974) established the relation to the
programming-language semantics.

3



Static Program Analysis as a Verification Method

• Automatic method to derive invariants about program behavior,
answers questions about program behavior:

– will index always be within bounds at program point p?

– will memory access at p always hit the cache?

• answers of sound static analysis are correct, but approximate: don’t
know is a valid answer!

• analyses proved correct wrt. language semantics,

4



1 Introduction

a simple imperative programming language with:

• variables // registers

• R = e; // assignments

• R = M [e]; // loads

• M [e1] = e2; // stores

• if (e) s1 else s2 // conditional branching

• goto L; // no loops

An intermediate language into which (almost) everything can be
translated. In particular, no procedures. So, only intra-procedural
analyses!

5



2 Example — Rules-of-Sign Analysis

Problem: Determine at each program point the sign of the values of all
variables of numeric type.

Example program:

1: x = 0;

2: y = 1;

3: while (y > 0) do

4: y = y + x;

5: x = x + (-1);

6



Program representation as control-flow graphs

1

2

4 3

y = 1

0

x = 0

y = y+x

5

x = x+(-1)

true(y>0) false(y>0)

7



We need the following ingredients:

• a set of information elements, each a set of possible signs,

• a partial order, “�”, on these elements, specifying the ”relative
strength” of two information elements,

• these together form the abstract domain, a lattice,

• functions describing how signs of variables change by the execution
of a statement, abstract edge effects,

• these need an abstract arithmetic, an arithmetic on signs.

8



We construct the abstract domain for single variables starting with the
lattice Signs = 2{−,0,+} with the relation “�” =“⊆”.

{ }

{+}

{0,+}{-,0}

{-}

{-,0,+}

{-,+}

{0}

9



The analysis should ”bind” program variables to elements in Signs .

So, the abstract domain is D = (Vars → Signs)⊥, a Sign-environment.

⊥ ∈ D is the function mapping all arguments to {}.

The partial order on D is D1 � D2 iff

D1 = ⊥ or

D1 x ⊆ D2 x (x ∈ Vars)

Intuition?

D1 is at least as precise as D2 since D2 admits at least as many signs as
D1

10



The analysis should ”bind” program variables to elements in Signs .

So, the abstract domain is D = (Vars → Signs)⊥. a Sign-environment.

⊥ ∈ D is the function mapping all arguments to {}.

The partial order on D is D1 � D2 iff

D1 = ⊥ or

D1 x ⊆ D2 x (x ∈ Vars)

Intuition?

D1 is at least as precise as D2 since D2 admits at least as many signs as
D1

11



How did we analyze the program?

1

2

4 3

y = 1

0

x = 0

y = y+x

5

x = x+(-1)

true(y>0) false(y>0)

In particular, how did we walk the
lattice for y at program point 5?

{ }

{+}

{0,+}{-,0}

{-}

{-,0,+}

{-,+}

{0}

12



How is a solution found?

Iterating until a fixed-point is reached

1

2

4 3

y = 1

0

x = 0

y = y+x

5

x = x+(-1)

true(y>0) false(y>0)

0 1 2 3 4 5

x y x y x y x y x y x y

13



Idea:

• We want to determine the sign of the values of expressions.

14



Idea:

• We want to determine the sign of the values of expressions.

• For some sub-expressions, the analysis may yield {+,−, 0},
which means, it couldn’t find out.

15



Idea:

• We want to determine the signs of the values of expressions.

• For some sub-expressions, the analysis may yield {+,−, 0},
which means, it couldn’t find out.

• We replace the concrete operators � working on values by
abstract operators �� working on signs:

16



Idea:

• We want to determine the signs of the values of expressions.

• For some sub-expressions, the analysis may yield {+,−, 0},
which means, it couldn’t find out.

• We replace the concrete operators � working on values by
abstract operators �� working on signs:

• The abstract operators allow to define an abstract evaluation of
expressions:

[[e]]� : (Vars → Signs) → Signs

17



Determining the sign of expressions in a Sign-environment works as
follows:

[[c]]�D =




{+} if c > 0

{−} if c < 0

{0} if c = 0

[[v]]� = D(v)

[[e1 � e2]]
�D = [[e1]]

�D�� [[e2]]
�D

[[�e]]�D = ��[[e]]�D

18



Abstract operators working on signs (Addition)

+# {0} {+} {-} {-, 0} {-, +} {0, +} {-, 0, +}

{0} {0} {+}

{+}

{-}

{-, 0}

{-, +}

{0, +}

{-, 0, +} {-, 0, +}

19



Abstract operators working on signs (Multiplication)

×# {0} {+} {-} {-, 0} {-, +} {0, +} {-, 0, +}

{0} {0} {0}

{+}

{-}

{-, 0}

{-, +}

{0, +}

{-, 0, +} {0}

Abstract operators working on signs (unary minus)

−# {0} {+} {-} {-, 0} {-, +} {0, +} {-, 0, +}

{0} {-} {+} {+, 0} {-, +} {0, -} {-, 0, +}

20



Working an example: D = {x �→ {+}, y �→ {+}}

[[x+ 7]]�D = [[x]]�D +� [[7]]�D

= {+} +� {+}
= {+}

[[x+ (−y)]]�D = {+} +� (−�[[y]]�D )

= {+} +� (−�{+})
= {+} +� {−}
= {+,−, 0}

21



[[lab]]� is the abstract edge effects associated with edge k.

It depends only on the label lab:

[[;]]� D = D

[[true (e)]]�D = D

[[false (e)]]�D = D

[[x = e;]]�D = D ⊕ {x �→ [[e]]�D}
[[x = M [e];]]� D = D ⊕ {x �→ {+,−, 0}}
[[M [e1] = e2;]]

�D = D

... whenever D �= ⊥
These edge effects can be composed to the effect of a path π = k1 . . . kr:

[[π]]� = [[kr]]
� ◦ . . . ◦ [[k1]]�

22



Consider a program node v:

→ For every path π from program entry start to v the analysis should
determine for each program variable x the set of all signs that the
values of x may have at v as a result of executing π.

→ Initially at program start, no information about signs is available.

→ The analysis computes a superset of the set of signs as safe
information.

==⇒ For each node v, we need the set:

S[v] =
⋃

{[[π]]�⊥ | π : start →∗ v}

23



Question:

How do we compute S[u] for every program point u?

Idea:

Collect all constraints on the values of S[u] into a system of constraints:

S[start ] ⊇ ⊥
S[v] ⊇ [[k]]� (S[u]) k = (u, _, v) edge

24



Question:

How can we compute S[u] for every program point u?

Idea:

Collect all constraints on the values of S[u] into a system of constraints:

S[start ] ⊇ ⊥
S[v] ⊇ [[k]]� (S[u]) k = (u, _, v) edge

Why ⊇?

25



Wanted:

• a least solution (why least?)

• an algorithm that computes this solution

Example:

26



1

2

4 3

y = 1

0

x = 0

y = y+x

5

x = x+(-1)

true(y>0) false(y>0)

S[0] ⊇ ⊥
S[1] ⊇ S[0]⊕ {x �→ {0}}
S[2] ⊇ S[1]⊕ {y �→ {+}}
S[2] ⊇ S[5]⊕ {x �→ [[x+ (−1)]]� S[5]}
S[3] ⊇ S[2]
S[4] ⊇ S[2]
S[5] ⊇ S[4]⊕ {y �→ [[y + x]]� S[4]}

27


