Static Program Analysis (WS 2014) Sebj‘::aé‘ei"r';i';

Saarland University ExerC|Se Sheet 6 Christian Hammer

C ter Sci
omputer Science Tomasz Dudziak

Interprocedural Slicing and Cache Analysis

print(o.get())

Figure 1: Control flow graph for the example program

Exercise 6.1: 6 points

Figure 1 contains a simplified PDG of a part of the sample Java program introduced in the lecture.
Extend and analyze the PDG as follows.

1. Compute the context-insensitive backwards slice of the final call to print(o.get()).

2. Explain why the slice you just computed is imprecise.

3. Extend the graph by summary edges. A summary edge represents a path from a formal parameter
to the return value inside the invoked function.

4. Compute a slice using the same slicing criterion as in point 1 but with the context-sensitive 2-phase
slicer. Which nodes are marked in the first phase, which in the second?



Exercise 6.2: 6 points
Consider the following program.

read a;

read b;

read a;

if (a>b) {
read c;
read d;

} else {
read e;
read f;

}

read Xx;

read a;

1. Perform a "may” and a "must” cache analysis of this program assuming an LRU-cache with
associativity 4 that is empty at the start of the program. Is it possible to determine whether the
last access to a results in a cache hit or a cache miss? Does this change if we assume that the
initial cache state is unknown?

2. We now assume that the cache uses the FIFO replacement policy. Could an analysis determine
whether the last access to a results in a cache hit or a cache miss if the cache is empty at the start
of the program? Does this change if we assume that the initial cache state is unknown?



