Polyhedral Analysis

Exercise 3.1: 6 points

1. Give the inequalities for the following frame (2P):

$$
S=\{(1,1),(1,2),(2,3)\}, R=\{(1,1),(1,0)\}, D=\emptyset
$$

2. Consider the example polyhedron at the end of Section 3.2 of the paper by Halbwachs \& Cousot ${ }^{1}$. Give the resulting polyhedron (frame and constraints) after each of the following assignments.
(a) $x_{1}:=x_{2}(1 \mathrm{P})$
(b) $x_{1}:=1$ (1P)
(c) $x_{1}:=x_{1}+1(2 \mathrm{P})$

Exercise 3.2: 6 points

1. Consider a polyhedron P given by its inequalities $A x \leq b$. Derive the inequalities of the convex hull $P^{\prime}=A^{\prime} x \leq b^{\prime}$ of P and a vertex s. Note that a point x^{\prime} is in P^{\prime} if and only if it is a convex combination of the vertices of a point in P and $s(3 \mathrm{P})$.
2. Compute the convex hull of the polyhedron from the end of Section 3.2 and the vertex $(4,6)$ and eliminate λ from the system of inequalities (3P).

Exercise 3.3: (Bonus Question, 2 points)

Let P by the set of all polyhedra over \mathbb{R}^{n}. Can the concretization function

$$
\begin{aligned}
\gamma: P & \rightarrow \mathcal{P}(V \rightarrow \mathbb{R}) \\
(A, b) & \mapsto\left\{v_{1} \mapsto x_{1}, \ldots, v_{n} \mapsto x_{n} \mid A\left[x_{1} \cdots x_{n}\right]^{T} \leq b\right\}
\end{aligned}
$$

be completed (by a function α) to a Galois connection? Explain.

[^0]
[^0]: ${ }^{1}$ Halbwachs \& Cousot: Automatic Discovery of Linear Restraints Among Variables of a Program, http://www.di.ens. fr/~cousot/COUSOTpapers/publications.www/CousotHalbwachs-POPL-78-ACM-p84--97-1978.pdf

