
Static Program Analysis (WS 2014)
Saarland University
Computer Science Exercise Sheet 3

Sebastian Hack
Jan Reineke

Christian Hammer
Tomasz Dudziak

Intervals, relational domains, and widening

0 1 2

3

4

E

5
false(N < 0) i = 0

true(i < N) i++

false(i < N)

false(i == N)

true(i == N)

true(N < 0)

Figure 1: Control flow graph for the example program

Exercise 3.1: 6 points

Consider the following program and its control flow graph in Figure 1.

if (N < 0) return;
for (i = 0; i < N; i++) {
// do something that doesn’t affect i or N

}
assert (i == N);

Note that we abstract from the loop body (for example by slicing the program on the asserted expression)
and the assert statement is represented by a conditional jump to an error location E.

By Var = {x1, . . . , xn} we will denote the finite set of program variables, State = Var → Z is the
set of program states. Reachability semantics for the CFG edges is defined using the following function
J.K : P(State)→ P(State).

Jtrue(xi < xj)KX = {π ∈ X : π(xi) < π(xj)} for xi, xj ∈ Var
Jtrue(xi == xj)KX = {π ∈ X : π(xi) = π(xj)} for xi, xj ∈ Var

Jtrue(xi < C)KX = {π ∈ X : π(xi) < C} for xi ∈ Var, C ∈ Z
Jfalse(e)KX = X \ (Jtrue(e)KX)

Jxi = CKX = {π[xi 7→ C] : π ∈ X} for xi ∈ Var, C ∈ Z
Jxi++KX = {π[xi 7→ π(xi) + 1] : π ∈ X} for xi ∈ Var

Design an abstract domain (A,v) that is expressive enough to prove the assertion in the example
program. Your domain should be a complete lattice of finite height. Define a Galois connection
(P(State),⊆) −−−→←−−−α

γ
(A,v). For each edge in the control flow graph derive the best abstract operation,

i.e.,
JeK# = α ◦ JeK ◦ γ

1

Having defined all the operations, perform the analysis on the example program, i.e., provide the least
solution to the following system of equations in A.

S0 = >A
S1 = Jfalse(N < 0)K#S0

S2 = (Ji = 0K#S1) t (Ji++K#S3)

S3 = Jtrue(i < N)K#S2

S4 = Jfalse(i < N)K#S2

SE = Jfalse(i == N)K#S4

S5 = (Jtrue(i == N)K#S4) t (Jtrue(N < 0)K#S0)

If everything goes well, the abstract value for SE should be ⊥. This signifies that the error location is
unreachable and the assertion in the program always holds.

Hint: The standard rule-of-signs analysis based on Var → P(Sign) will not work here but you can
save a bit of work by also basing your abstract domain on P(Sign). In your definitions, you are allowed
to use the abstract operations in P(Sign) and the functions αSign and γSign that provide an interpretation
of the elements in this lattice via a Galois connection (P(Z),⊆) −−−−−→←−−−−−

αSign

γSign
(P(Sign),⊆).

Exercise 3.2: 3 points

Consider the following set L

L = {X ⊆ (Z ∪ {+,−}) : X is finite ∧
∧ (+ ∈ X =⇒ ∀x ∈ X ∩ Z. x ≤ 0) ∧
∧ (− ∈ X =⇒ ∀x ∈ X ∩ Z. x ≥ 0)}

and a function γ : L→ P(Z) defined

γ(X) = {x ∈ Z : x ∈ X ∨ (x > 0 ∧+ ∈ X) ∨ (x < 0 ∧ − ∈ X)}

Define the ordering on L such that γ is monotone. Design a widening operator for L. Prove both safety
and termination properties of your operator.

Exercise 3.3: 3 points

Suppose that Var is the finite set of program variables and P(Var → Z) is the concrete domain. The
division operation in the concrete semantics is defined as follows.

Jx := y/zK : P(Var→ Z)→ P(Var→ Z)
Jx := y/zK X = {π[x 7→ bπ(y)/π(z)c] : π ∈ X ∧ π(z) 6= 0} for x, y, z ∈ Var

Note that this means that the program execution does not continue when a division-by-zero error occurs.
Your task is to derive the most precise abstract operator Jx := y/zK# for the interval domain from

the lecture.

2

