Abstractions, concretizations, and Galois connections

Exercise 2.1: 3 points
Following set SignConst is an extension of the lattice Sign given in the lecture.

$$
\text { SignConst }=\{\perp, \top,\{+\},\{-\},\{-, 0\},\{0,+\},\{-,+\}\} \cup \mathbb{Z}
$$

The meaning of elements of SignConst will be given by a following function γ : SignConst $\rightarrow \mathcal{P}(\mathbb{Z})$.

$$
\begin{aligned}
\gamma(\top) & =\mathbb{Z} \\
\gamma(\perp) & =\emptyset \\
\gamma(\{+\}) & =\{x \in \mathbb{Z}: x>0\} \\
\gamma(\{-\}) & =\{x \in \mathbb{Z}: x<0\} \\
\gamma(\{-, 0\}) & =\gamma(\{-\}) \cup\{0\} \\
\gamma(\{0,+\}) & =\gamma(\{+\}) \cup\{0\} \\
\gamma(\{-,+\}) & =\mathbb{Z} \backslash\{0\} \\
\gamma(x) & =\{x\}
\end{aligned}
$$

In a way, SignConst combines constant propagation with rule-of-signs analysis. The ordering \sqsubseteq is defined using the function γ as:

$$
\forall x, y \in \text { SignConst. } x \sqsubseteq y \Longleftrightarrow \gamma(x) \subseteq \gamma(y)
$$

Your task is to do the following.

1. Draw a Hasse diagram for SignConst. You can use dots ("...") to avoid writing down all elements of the set \mathbb{Z}. Determine the height of SignConst where height is defined as:

$$
\operatorname{height}(P):=\max \{|X|: X \subseteq P \wedge \forall a, b \in X . a \leq b \vee a \geq b\}
$$

2. Define the abstract addition operator for $\boldsymbol{S i g n C o n s t}$. That is, write a formula for $\llbracket e_{1}+e_{2} \rrbracket \#$ as a function of $\llbracket e_{1} \rrbracket^{\#}$ and $\llbracket e_{2} \rrbracket$. Your operator should fulfill the correctness condition:

$$
\gamma\left(\llbracket e_{1}+e_{2} \rrbracket^{\#}\right) \supseteq\left\{n_{1}+n_{2}: n_{1} \in \gamma\left(\llbracket e_{1} \rrbracket^{\#}\right) \wedge n_{2} \in \gamma\left(\llbracket e_{2} \rrbracket^{\#}\right)\right\}
$$

Exercise 2.2: 3 points

Suppose that (C, \leq) and (A, \sqsubseteq) are complete lattices and $C \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}} A$ is a Galois connection between them. Prove that for any $x \in C, \alpha(x)=\Pi\{a \in A: x \leq \gamma(a)\}$.

Exercise 2.3: 3 points

Prove that if $(C, \leq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(A, \sqsubseteq)$ is a Galois connection, then $\forall l_{1}, l_{2} \in A . \gamma\left(l_{1} \sqcap l_{2}\right)=\gamma\left(l_{1}\right) \wedge \gamma\left(l_{2}\right)$

Exercise 2.4: 3 points

For following definitions of P and $\gamma: P \rightarrow \mathcal{P}(\mathbb{Z})$ determine whether there exists a function $\alpha: \mathcal{P}(\mathbb{Z}) \rightarrow P$ and a relation \sqsubseteq such that $(\mathcal{P}(\mathbb{Z}), \subseteq) \underset{\alpha}{\stackrel{\gamma}{\leftrightarrows}}(P, \sqsubseteq)$ is a Galois connection.

1. Let A be a non-empty finite subset of \mathbb{Z}. We define $P=\mathcal{P}(A) \cup\{\perp\}$ and

$$
\begin{aligned}
& \gamma(X)=(\mathbb{Z} \backslash A) \cup X \\
& \gamma(\perp)=\emptyset
\end{aligned}
$$

Note: Be careful not to confuse $\emptyset \in P$ with $\perp \in P$.
2. $P=\mathbb{Z} \cup\{\perp, \top\}$ with $\gamma(n)=\mathbb{Z} \backslash\{n\}, \gamma(\perp)=\emptyset, \gamma(\top)=\mathbb{Z}$.
3. $P=\{$ even, positive, $\perp, \top\}$ and

$$
\begin{aligned}
\gamma(\text { even }) & =\{n \in \mathbb{Z}: 2 \mid n\} \\
\gamma(\text { positive }) & =\{n \in \mathbb{Z}: n>0\} \\
\gamma(\perp) & =\emptyset \\
\gamma(\top) & =\mathbb{Z}
\end{aligned}
$$

