Abstractions, concretizations, and Galois connections

Exercise 2.1: 3 points

Following set SignConst is an extension of the lattice Sign given in the lecture.

$$\mathbf{SignConst} = \{\bot, \top, \{+\}, \{-\}, \{-, 0\}, \{0, +\}, \{-, +\}\} \cup \mathbb{Z}$$

The meaning of elements of **SignConst** will be given by a following function $\gamma:$ **SignConst** $\rightarrow \mathcal{P}(\mathbb{Z})$.

$$\begin{split} \gamma(\top) &= \mathbb{Z} \\ \gamma(\bot) &= \emptyset \\ \gamma(\{+\}) &= \{x \in \mathbb{Z} : x > 0\} \\ \gamma(\{-\}) &= \{x \in \mathbb{Z} : x < 0\} \\ \gamma(\{-,0\}) &= \gamma(\{-\}) \cup \{0\} \\ \gamma(\{0,+\}) &= \gamma(\{+\}) \cup \{0\} \\ \gamma(\{0,+\}) &= \mathbb{Z} \setminus \{0\} \\ \gamma(\{-,+\}) &= \mathbb{Z} \setminus \{0\} \\ \gamma(x) &= \{x\} \end{split}$$

In a way, **SignConst** combines constant propagation with rule-of-signs analysis. The ordering \sqsubseteq is defined using the function γ as:

$$\forall x, y \in \mathbf{SignConst.} \ x \sqsubseteq y \iff \gamma(x) \subseteq \gamma(y)$$

Your task is to do the following.

1. Draw a Hasse diagram for **SignConst**. You can use dots ("...") to avoid writing down all elements of the set Z. Determine the height of **SignConst** where height is defined as:

$$\operatorname{height}(P) := \max\{|X| \colon X \subseteq P \land \forall a, b \in X. \ a \le b \lor a \ge b\}$$

2. Define the abstract addition operator for **SignConst**. That is, write a formula for $[\![e_1 + e_2]\!]^{\#}$ as a function of $[\![e_1]\!]^{\#}$ and $[\![e_2]\!]^{\#}$. Your operator should fulfill the correctness condition:

$$\gamma(\llbracket e_1 + e_2 \rrbracket^{\#}) \supseteq \{n_1 + n_2 \colon n_1 \in \gamma(\llbracket e_1 \rrbracket^{\#}) \land n_2 \in \gamma(\llbracket e_2 \rrbracket^{\#})\}$$

Exercise 2.2: 3 points

Suppose that (C, \leq) and (A, \sqsubseteq) are complete lattices and $C \xrightarrow{\gamma}{\alpha} A$ is a Galois connection between them. Prove that for any $x \in C$, $\alpha(x) = \prod \{a \in A : x \leq \gamma(a)\}.$

Exercise 2.3: 3 points

Prove that if $(C, \leq) \xrightarrow{\gamma} (A, \sqsubseteq)$ is a Galois connection, then $\forall l_1, l_2 \in A$. $\gamma(l_1 \sqcap l_2) = \gamma(l_1) \land \gamma(l_2)$

Exercise 2.4: 3 points

For following definitions of P and $\gamma: P \to \mathcal{P}(\mathbb{Z})$ determine whether there exists a function $\alpha: \mathcal{P}(\mathbb{Z}) \to P$ and a relation \sqsubseteq such that $(\mathcal{P}(\mathbb{Z}), \subseteq) \xrightarrow[\alpha]{} (P, \sqsubseteq)$ is a Galois connection.

1. Let A be a non-empty finite subset of \mathbb{Z} . We define $P = \mathcal{P}(A) \cup \{\bot\}$ and

$$\gamma(X) = (\mathbb{Z} \setminus A) \cup X$$
$$\gamma(\bot) = \emptyset$$

Note: Be careful not to confuse $\emptyset \in P$ with $\bot \in P$.

- 2. $P = \mathbb{Z} \cup \{\bot, \top\}$ with $\gamma(n) = \mathbb{Z} \setminus \{n\}, \gamma(\bot) = \emptyset, \gamma(\top) = \mathbb{Z}$.
- 3. $P = \{\text{even, positive}, \bot, \top\}$ and

$$\gamma(\text{even}) = \{n \in \mathbb{Z} \colon 2|n\}$$
$$\gamma(\text{positive}) = \{n \in \mathbb{Z} \colon n > 0\}$$
$$\gamma(\perp) = \emptyset$$
$$\gamma(\top) = \mathbb{Z}$$