Lattice theory and basic data flow analysis

Exercise 1.1: 2 Points

Draw a control flow graph for the following fragment of C code.

```
 \begin{array}{l} \mbox{for } (i = 0; \, i < N; \, i++) \; \{ \\ \mbox{for } (j = i; \, j < N; \, j++) \; \{ \\ \mbox{if } (A[i][j] == 0) \\ \mbox{goto exit;} \\ \} \\ \} \\ \mbox{exit:} \\ \mbox{printf}("i = \%d, \, j = \%d \backslash n", \, i, \, j); \end{array}
```

Edges of the graph should be labeled with statements or branch conditions (true(e) or false(e) for a boolean expression e). <u>Hint:</u> when in doubt about loops, think how would you rewrite a for loop using while.

Exercise 1.2: 2 Points

- 1. Prove that if a partially-ordered set has a bottom element, then it is uniquely determined.
- 2. Prove that every complete lattice has a \top and \perp element.

Exercise 1.3: 4 Points

Let P be a non-empty partially-ordered set. Prove that if $\bigwedge S$ exists for all subsets $S \subseteq P$ then P is a complete lattice. <u>Hint</u>: Show that $\bigvee S = \bigwedge S^u$.

Exercise 1.4: 4 Points

Suppose that (L, \leq_L) is a complete lattice. For each of following definitions of (P, \leq_P) determine whether it is a partial order, lattice, and/or a complete lattice. Does it have a top or bottom element? What is it?

- 1. $P = \{X \subseteq \mathbb{N} : |X| \le 3 \lor X = \mathbb{N}\}$ with ordinary set inclusion $(\le_P = \subseteq)$.
- 2. $P = (L \times L)$ with $(x_1, x_2) \leq_P (y_1, y_2)$ iff $x_1 \leq_L y_1 \land x_2 \leq_L y_2$.
- 3. $P = (\mathbb{N}_+ \times \mathbb{N}_+)$ with $(a, b) \leq_P (a', b')$ iff $ba' \leq b'a$ where \mathbb{N}_+ is the set of positive natural numbers.
- 4. $P = A \cup \{\top, \bot\}$ where $\top, \bot \in L$ are L's top and bottom elements and $A \subseteq L$ is an arbitrary subset of L. The ordering relation follows the one on L, i.e., $x \leq_P y$ iff $x \leq_L y$.