
Index Set Splitting

Index Set Splitting is a preprocessing phase for algorithms in the polytope model which yields
schedules which are, in some cases, orders of magnitude faster. These are cases in which the
dependence graph has small irregularities. The idea of this algorithm is to split the domain of loop nests
into parts and apply existing algorithms to produce schedules to there individually. For the case of
uniform dependencies it is already proven that there exists algorithms which yield a schedule with
(asymptotically) optimal latency. But for afiine, non-uniform dependence the optimum is sometimes
missed by orders of magnitude. The use of different schedules for different iteration domains improves
this situation.

The first important definition is the latency of a program. It is the difference of the maximal and
minimal value of the scheduling function. This can be interpreted as running time on a parallel
computer with enough processors. It is clear that we have to minimize the latency in order to get a
possible better execution. This concept can also be extended to individual statements. It's a lower
bound on the latency of the whole program.

A first naive approach to split the index set is to subdivide the iteration space for a statement S where
each part corresponds to a selection of the incoming dependencies. We need to consider all paths from
a statement R to this statement S. This means we have to consider d2 o d1 if there is a dependence d1
from R to T and d2 from T to S. If the graph is a tree we have no problem but if the graph is a directed
cyclic graph there can be O(2^l) paths which then have to be merged. This would yield in a doubly
exponential algorithm and is therefore impractical in practice.

The solution is to associate a finite automaton with the dependence graph and use well known
algorithms for associating any two states S and T with a regular expression, representing all paths from
S to T. With this first version we lose all information on the delay associated with the composite
dependence and can't produce good results. To circumvent this problem we consider additionally every
single dependence once and split the index set accordingly. This holds some information which is lost
during the transformation.

The described algorithm treats the program as a whole and searches for all potentially useful splits. For
large programs it is sometimes desirable to apply index set splitting only when and where it is
necessary. The basic idea to fix this is to first schedule the program with standard techniques and if we
want to improve the program use index splitting then. We could also change the algorithm to take
resource constraints into account. If we are already using all processors it is useless to increase
parallelism.

Open questions:
1) Is this used in practice?
2) How to generate code for this different index sets?
3) Hot does the automaton stuff work?

Summary for

Index Set Splitting

The paper by M. Griebl, P. Feautrier and C. Lengauer introduces index set splitting as a pre-

processing state for polytope model optimization. For regular/uniform dependences, it is possible to

determine an asymptotically optimal schedule. For non-uniform dependencies, however, an optimal

schedule cannot be constructed in general. The idea of this paper is to partition the iteration domain

into regular subsets, which can then be scheduled independently of each other.

The authors first introduce a simple, naïve implementation of an index splitting algorithm. Intuitively,

the algorithm tries to divide the iteration space for one statement by the incoming dependencies (i.e.

the flow to the statement). An algorithmic approach to this intuition would compute all possible

paths to any statement, then splitting the index set of every statement according to those paths. A

more thorough analysis of this algorithm suggests a few optimizations: There are always multiple

paths to any statement, which might or might not align at some point. Therefore the split must

encapsulate all paths which share a common suffix. This problem is expensive, since enumerating any

paths and merging the splits takes runtime exponential in the number of incoming dependencies.

Even worse, the number of different paths connecting two nodes is exponential, even in the absence

of cycles. Hence, the algorithm is most likely too inefficient in practice.

In order to find a finite (and more importantly, input size independent) description of such paths, the

authors propose to depart from the polyhedral description in favor of FSAs. In particular, any set of

paths between two statements will be associated with a regular expression. Still, this description is

not obtained without a loss of precision, since the transitive closure of affine relations is not

necessarily affine itself. The authors proceed to deploy heuristics to deal with such cases. The

proposed algorithm will keep all dependencies in mind, and split the index set into the set of its

targets and the rest before proceeding further along the description. This gives a conservative

approximation on the minimal range of each dependency, which is propagated along.

The authors introduce yet another optimization heuristic. While the proposed method is powerful, it

is not equipped to deal with problems on a very big scale, e.g. large programs with only very few

instances where index set splitting would be useful, or small scale optimizations, were the polyhedral

description with its higher precision would most likely yield better result. Hence we can use simpler,

but faster, scheduling algorithms first and then apply index set splitting for dependencies which

could not be resolved. Similarly, if the loss of precision incurred by index set splitting gets too large

for smaller problems, transitioning to the polytope model for the partitioned index sets will most

likely yield a better solution.

The paper presents the basic idea to partiston the index sets of all the statements independently of the problem
size into the fixed number of parts and compute individual schedules for each part.Since it is not genreally not
possible to find the arbitary schedule for minimum latency, so one should restricts the search to a subset of all
possible functions , a function is affine in loop counters with unknown coefficients. which then can be solved with
the linear programming methods, but for some problems , resulting linear program can be infeasible then one can
resorts to multidimensitional schedules.

Index set is diffrent from that tiling that inscreases the granularity but index set spliting does not change number
of dimensions but benefits from an individual treatment of the various partitions.

Paper also gives introduction about the naive method of spliting , which found to be ineffective if there are loops
in the statement dependence graph since, within the strongly connected components, the number of paths are
unbounded.

Spiting algo says that

1. For the all dependences d, compute a polytope Rd containing the rande of d, and the split the set I(T) of the
target statement of d into Rd and I(T)/Rd.

2. Compute a description for the set of all the paths in the statement dependence graph in kleene´s algo.

3. Then find realtion path that maps point from index space I(t) to I(S) and compuet image p(Rd) of this relation.
Then we divide the index set I(S) into a part which is in the image under p and the rest.

But few considerations in practice: for large dependence it is worthless for uniform dependencies and due to the
condensed description of set of all paths and overestimation of the reflexive transitive closure by omega we lose
precision and does not find the split.

For large programs it is generally advised to apply split only when needed , .i.e. first schedule the program
without spliting and if result is not satisfactory , then improve by spliting. however this algo also fails when
statements which have more parallel instances than there are real processor avaliable. here we are not interseted
in optimal solution but by concentrating on the order of the magnitude by which running time is reduced.

One must also consider the tradeoff between the number of split and cost of expotential search. and we can skip
propogation step to save the compilation time at the cost of some useful splits.

Questions:

1. What are uniform and non-uniform dependencies?

2. Since we can´t decide whether the spit is useful locally, we accept useless split(by uniform dependences)how
we ensure that spiting by non-uniform dependencies are always good.

3.Cubic description of the paths(by kleene,s algo) is loss of precision why not try some other way like Dijkstra's or
Johnson's algorithm.

4."Turn-off propogation to save compilation time at cost of some useful split", and what is more important: saving
compilation time which happens once or parallization of code by useful spliting ,which runs several times?

Index Set Splitting

Index Set Splitting is a technique to minimize the latency of schedules in the polytope model, or in
other words, to maximize the parallelism of a loop nest. In order to do this, the index sets of statements
within the loop nest is literally splitted (as in loop splitting). This splitting is done to remove (irregular)
dependencies, thus the resulting polytope (with less dependencies) might allow more parallelism.

Multiple algorithms are presented but they are all based on the same idea. First compute the
dependencies between statements e.g., by computing a dependency graph as other scheduling algorithms
do. For a dependency (or a composite of dependencies) which ends in a statement T, split the index
space of T into the image of a such a (composite) dependency and the remaining part. After splitting
there will be an instance of the statement T in the image of the dependency which has to satisfy the
dependency and one in the remaining part of the iteration space, for which the dependency is effectively
removed. After the splitting step is done e.g., all dependencies are split as described or a heuristic ends
the process, the resulting polytope is (re)scheduled.

Splitting all (composite) dependencies will result in a exponential algorithm with regards to the
number of dependencies between to statements, in the words of the authors an unpractical approach.
To counter this growth they propose to use regular expressions to express (and effectively merge) de-
pendencies in the graph. Detailed information (the exact path) is lost while the number of paths is
reduced to one per statement pair. As they state this approaches lacks to much precision they combine
it with the initial one. All (single) dependencies are considered once before the combined ones are con-
sidered in the simplified way. As the image of any composite dependency is part of the image of the last
dependency on the path this will conservatively approximate the image of each composite dependency
considered by the initial exponential algorithm.

For their final algorithm version they first use a non-splitting scheduler and analyse the result. In
order increase parallelism, statements are only rescheduled if splitting yields a smaller latency and the
not all processors are already assigned a parallel instance of this statement yet. This version (with some
technical modifications) was implemented in the LooPo parallelizer but without giving actual results on
performance or runtime.

Questions

• Why are there two schedules given for the first example, or two be more precise whats a latency
schedule and how is it computed?

• A multidimensional shedule could increase locality for example 1 and allows parallel execution as
well. Simple splitting will transfer the challenge to find this to the sheduler afterwards. As this
is a difficult chalenge, could the information (gained during the split process) be used to help the
scheduler?

• Whats dupwards|ddownwards and d+ ?

Summary of [O1], about 394 words December 15, 2012

	1
	2
	Seminar_smmary_Wenkai1
	Seminar_smmary_Wenkai.pdf

	3
	4
	5

