SSA-Form Register Allocation
 Foundations

Sebastian Hack

Compiler Construction Course Winter Term 2017

Saarland University, Computer Science

Overview

1 Graph Theory

- Perfect Graphs
- Chordal Graphs

2 SSA Form
■ Dominance

- ϕ-functions

3 Interference Graphs

- Non-SSA Interference Graphs
- Perfect Elimination Orders
- Chordal Graphs

4 Interference Graphs of SSA-form Programs

- Dominance and Liveness
- Dominance and Interference
- Spilling
- Implementing ϕ-functions

5 Intuition

Overview

1 Graph Theory

- Perfect Graphs
- Chordal Graphs

2 SSA Form

- Dominance
- ϕ-functions

3 Interference Graphs

- Non-SSA Interference Graphs
- Perfect Elimination Orders
- Chordal Graphs

4 Interference Graphs of SSA-form Programs

- Dominance and Liveness
- Dominance and Interference
- Spilling

■ Implementing ϕ-functions
5 Intuition

Complete Graphs and Cycles

Complete Graph K^{5}
Cycle C^{5}

Induced Subgraphs

Graph with a C^{4}
subgraph

Graph with a C^{4} induced subgraph

Induced Subgraphs

Graph with a C^{4}
subgraph
Graph with a C^{4} induced subgraph

Note

Induced complete graphs are called cliques

Clique number and Chromatic number

Definition

$\omega(G)$ Size of the largest clique in G
$\chi(G)$ Number of colors in a minimum coloring of G

Clique number and Chromatic number

Definition

$\omega(G)$ Size of the largest clique in G
$\chi(G)$ Number of colors in a minimum coloring of G

Corollary

$\omega(G) \leq \chi(G)$ holds for each graph G

Clique number and Chromatic number

Definition

$\omega(G)$ Size of the largest clique in G
$\chi(G)$ Number of colors in a minimum coloring of G

Corollary

$\omega(G) \leq \chi(G)$ holds for each graph G

Perfect Graphs

Definition
 G is perfect $\Longleftrightarrow \chi(H)=\omega(H)$ for each induced subgraph H of G

Perfect Graphs

Definition

G is perfect $\Longleftrightarrow \chi(H)=\omega(H)$ for each induced subgraph H of G
 perfect?

Perfect Graphs

Definition

G is perfect $\Longleftrightarrow \chi(H)=\omega(H)$ for each induced subgraph H of G

Chordal Graphs

Definition

G is chordal $\Longleftrightarrow G$ contains no induced cycles longer than 3

Chordal Graphs

Definition

G is chordal $\Longleftrightarrow G$ contains no induced cycles longer than 3

chordal?

Chordal Graphs

Definition

G is chordal $\Longleftrightarrow G$ contains no induced cycles longer than 3

Theorem

Chordal graphs are perfect

Chordal Graphs

Definition

G is chordal $\Longleftrightarrow G$ contains no induced cycles longer than 3

Theorem
Chordal graphs are perfect

Theorem

Chordal graphs can be colored optimally in $O(|V| \cdot \omega(G))$

Overview

1 Graph Theory

- Perfect Graphs
- Chordal Graphs

2 SSA Form

- Dominance
- ϕ-functions

3 Interference Graphs

- Non-SSA Interference Graphs
- Perfect Elimination Orders
- Chordal Graphs

4 Interference Graphs of SSA-form Programs

- Dominance and Liveness
- Dominance and Interference
- Spilling

■ Implementing ϕ-functions
55 Intuition

Dominance

Definition

Every use of a variable is dominated by its definition

Dominance

Definition

Every use of a variable is dominated by its definition

- You cannot reach the use without passing by the definition

■ Else, you could use uninitialized variables

- Dominance induces a tree on the control flow graph
- Sometimes called strict SSA

What do ϕ-functions mean?

Frequent misconception

Put a sequence of copies in the predecessors

What do ϕ-functions mean?

Frequent misconception

Put a sequence of copies in the predecessors

What do ϕ-functions mean?
Lost Copy Problem

What do ϕ-functions mean?

Lost Copy Problem

- Cannot simply push copies in predecessor

■ Copies are also executed if we jump out of the loop
■ Need to remove critical edges (loopback edge)

What do ϕ-functions mean?

Swap Problem

What do ϕ-functions mean?

Swap Problem

- a_{2} overwritten before used
- All ϕs in a block need to be evaluated simultaneously

What do ϕ-functions mean?

The Reality
ϕ-functions correspond to parallel copies on the incoming edges

ϕ-functions and uses

- Does not fulfill dominance property
- $\phi \mathrm{s}$ do not use their operands in the ϕ-block
■ Uses happen in the predecessors

ϕ-functions and uses

- Does not fulfill dominance property
- $\phi \mathrm{s}$ do not use their operands in the ϕ-block
- Uses happen in the predecessors

Split ϕ-functions in two parts:

- Split critical edges
- Read part $\left(\phi^{r}\right)$ in the predecessors
- Write part (ϕ^{w}) in the block
- Correct modelling of liveness

Overview

```
1. Graph Theory
- Perfect Graphs
- Chordal Graphs
2 SSA Form
- Dominance
- \(\phi\)-functions
```

3 Interference Graphs

- Non-SSA Interference Graphs
- Perfect Elimination Orders
- Chordal Graphs

4 Interference Graphs of SSA-form Programs

- Dominance and Liveness
- Dominance and Interference
- Spilling

■ Implementing ϕ-functions
55 Intuition

Non-SSA Interference Graphs

An inconvenient property

- The number of live variables at each instruction (register pressure) is 2

■ However, we need 3 registers for a correct register allocation
■ In theory, this gap can be arbitrarily large (Mycielski Graphs)

Graph-Coloring Register Allocation

[Chaitin '80, Briggs '92, Appel \& George '96, Park \& Moon '04]

■ Every undirected graph can occur as an interference graph \Longrightarrow Finding a k-coloring is NP-complete
■ Color using heuristic
\Longrightarrow Iteration necessary
■ Might introduce spills although IG is k-colorable
■ Rebuilding the IG each iteration is costly

Graph-Coloring Register Allocation

[Chaitin '80, Briggs '92, Appel \& George '96, Park \& Moon '04]

■ Spill-code insertion is crucial for the program's performance
■ Hence, it should be very sensitive to the structure of the program

- Place load and stores carefully
- Avoid spilling in loops!
- Here, it is merely a fail-safe for coloring

Coloring

■ Subsequently remove the nodes from the graph

elimination order

Coloring

■ Subsequently remove the nodes from the graph

Coloring

- Subsequently remove the nodes from the graph

elimination order
d, e,

Coloring

- Subsequently remove the nodes from the graph

elimination order
d, e, c,

Coloring

- Subsequently remove the nodes from the graph

elimination order
d, e, c, a,

Coloring

■ Subsequently remove the nodes from the graph

$$
\begin{aligned}
& \text { elimination order } \\
& \hline \text { d, e, c, a, b }
\end{aligned}
$$

Coloring

- Subsequently remove the nodes from the graph

■ Re-insert the nodes in reverse order
■ Assign each node the next possible color

$$
\begin{aligned}
& \text { elimination order } \\
& \hline \text { d,e, } c, a, b
\end{aligned}
$$

Coloring

- Subsequently remove the nodes from the graph

■ Re-insert the nodes in reverse order
■ Assign each node the next possible color

$$
\begin{aligned}
& \text { elimination order } \\
& \hline d, e, c, a,
\end{aligned}
$$

Coloring

- Subsequently remove the nodes from the graph

■ Re-insert the nodes in reverse order
■ Assign each node the next possible color

$$
\begin{aligned}
& \text { elimination order } \\
& \hline \text { d, e, c, }
\end{aligned}
$$

Coloring

- Subsequently remove the nodes from the graph

■ Re-insert the nodes in reverse order
■ Assign each node the next possible color

$$
\begin{aligned}
& \text { elimination order } \\
& \hline \text { d, e, }
\end{aligned}
$$

Coloring

- Subsequently remove the nodes from the graph

■ Re-insert the nodes in reverse order
■ Assign each node the next possible color

Coloring

- Subsequently remove the nodes from the graph

■ Re-insert the nodes in reverse order
■ Assign each node the next possible color

elimination order

Coloring

- Subsequently remove the nodes from the graph

■ Re-insert the nodes in reverse order
■ Assign each node the next possible color

> elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Coloring

- Subsequently remove the nodes from the graph

■ Re-insert the nodes in reverse order
■ Assign each node the next possible color

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a,

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

$\frac{\text { elimination order }}{a, c}$

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

$\frac{\text { elimination order }}{a, c, d,}$

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

$\frac{\text { elimination order }}{a, c, d, e,}$

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

$\frac{\text { elimination order }}{a, c, d, e, b}$

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a, c, d, e,

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

$\frac{\text { elimination order }}{a, c, d,}$

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

$\frac{\text { elimination order }}{a, c}$

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

Coloring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order

Coloring
 PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order

From Graph Theory [Berge '60, Fulkerson/Gross '65, Gavril '72]

- A PEO allows for an optimal coloring in $k \times|V|$
- The number of colors is bound by the size of the largest clique

Coloring

PEOs

- Graphs with holes larger than 3 have no PEO, e.g.

■ G has a $\mathrm{PEO} \Longleftrightarrow G$ is chordal

Coloring

PEOs

■ Graphs with holes larger than 3 have no PEO, e.g.

■ G has a PEO $\Longleftrightarrow G$ is chordal

Core Theorem of SSA Register Allocation
■ The dominance relation in SSA programs induces a PEO in the IG

- Thus, SSA IGs are chordal

Overview

1 Graph Theory

- Perfect Graphs
- Chordal Graphs

2 SSA Form

- Dominance
- ϕ-functions

3 Interference Graphs

- Non-SSA Interference Graphs
- Perfect Elimination Orders
- Chordal Graphs

4 Interference Graphs of SSA-form Programs

- Dominance and Liveness
- Dominance and Interference
- Spilling
- Implementing ϕ-functions

5 Intuition

Liveness and Dominance

■ Each instruction ℓ where a variable v is live, is dominated by v

Liveness and Dominance

■ Each instruction ℓ where a variable v is live, is dominated by v

Why?

- Assume ℓ is not dominated by v
- Then there's a path from start to some usage of v not containing the definition of v
- This cannot be since each value must have been defined before it is used

Liveness and Dominance

■ Each instruction ℓ where a variable v is live, is dominated by v

Why?

- Assume ℓ is not dominated by v
- Then there's a path from start to some usage of v not containing the definition of v
- This cannot be since each value must have been defined before it is used

Interference and Dominance

- Assume v, w interfere, i.e. they are live at some instruction ℓ
- Then, $v \succeq \ell$ and $w \succeq \ell$
- Since dominance is a tree, either $v \succeq w$ or $w \succeq v$

$$
v\{\succeq, \preceq\} \quad w
$$

Interference and Dominance

- Assume v, w interfere, i.e. they are live at some instruction ℓ
- Then, $v \succeq \ell$ and $w \succeq \ell$
- Since dominance is a tree, either $v \succeq w$ or $w \succeq v$

$$
v\{\succeq, \preceq\} \quad w
$$

Consequences

■ Each edge in the IG is directed by dominance

- The interference graph is an "excerpt" of the dominance relation

Interference and Dominance

- Assume $\stackrel{v}{\bullet} \quad \begin{gathered} \\ \bullet\end{gathered}$
- Then, v is live at w

Interference and Dominance

■ Assume $\stackrel{v}{\bullet} \quad \underset{ }{\bullet}$

- Then, v is live at w

Why?

- If v and w interfere then there is a place where both are live
- w dominates all places where w is live
- Hence, v is live inside w's dominance tree
- Thus, v is live at w

Interference and Dominance

Consider three nodes u, v, w in the IG:

Interference and Dominance

Consider three nodes u, v, w in the IG:

- u is live at w
- v is live at w

Interference and Dominance

Consider three nodes u, v, w in the IG:

- u is live at w
- v is live at w

■ Thus, they interfere

Interference and Dominance

Consider three nodes u, v, w in the IG:

- u is live at w
- v is live at w

■ Thus, they interfere

Conclusion

All variables that ...

- interfere with w
- dominate w
... are mutually connected in the IG

Dominance and PEOs

- Before a value v is added to a PEO, add all values whose definitions are dominated by v
- A post order walk of the dominance tree defines a PEO
- A pre order walk of the dominance tree yields a coloring sequence

■ IGs of SSA-form programs can be colored optimally in $O(\omega(G) \cdot|V|)$
■ Without constructing the interference graph itself

Spilling

Theorem

For each clique in the IG there is a program point where all nodes in the clique are live.

Spilling

Theorem

For each clique in the IG there is a program point where all nodes in the clique are live.

- Dominance induces a total order inside the clique \Rightarrow There is a "smallest" value d
- All others are live at the definition of d

Spilling

- The chromatic number of the IG is exactly determined by the number of live variables at the labels

■ Lowering the number of values live at each label to k makes the IG k-colorable

- We know in advance where values must be spilled
\Longrightarrow All labels where the pressure is larger than k
- Spilling can be done before coloring and
- coloring will always succeed afterwards

Spilling

Consequences

- The chromatic number of the IG is exactly determined by the number of live variables at the labels

■ Lowering the number of values live at each label to k makes the IG k-colorable

- We know in advance where values must be spilled \Longrightarrow All labels where the pressure is larger than k
- Spilling can be done before coloring and
- coloring will always succeed afterwards

Conclusion

■ No iteration as in Chaitin/Briggs-allocators
■ No interference graph necessary

Getting out of SSA

■ We now have a k-coloring of the SSA interference graph

- Can we turn that program into a non-SSA program and maintain the coloring?

Getting out of SSA

■ We now have a k-coloring of the SSA interference graph

- Can we turn that program into a non-SSA program and maintain the coloring?

Central question

What to do about ϕ-functions?

Φ-Functions

■ Consider following example

Φ-Functions

- Consider following example

■ Φ-functions are parallel copies on control flow edges

Φ-Functions

- Consider following example

- Φ-functions are parallel copies on control flow edges

■ Considering assigned registers ...

Φ-Functions

- Consider following example

- Φ-functions are parallel copies on control flow edges

■ Considering assigned registers ...
■ ... Фs represent register permutations

Permutations

- A permutation can be implemented with copies if one auxiliary register \square is available

- Permutations can be implemented by a series of transpositions (i.e. swaps)

- A transposition can be implemented by three xors without a third register

Intuition: Why do SSA IGs do not have cycles?

Why are SSA IGs chordal?

■ How can we create a 4-cycle $\{a, c, d, e\}$?

Intuition: Why do SSA IGs do not have cycles?

Why are SSA IGs chordal?

■ How can we create a 4-cycle $\{a, c, d, e\}$?
■ Redefine $a>$ SSA violated!

Intuition: ϕ-functions break cycles in the IG

Program and live ranges

Interference Graph

Intuition: ϕ-functions break cycles in the IG

Program and live ranges

Interference Graph

Intuition: Why destroying SSA before RA is bad

Parallel copies

Sequential copies

$$
\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \leftarrow(a, b, c, d)
$$

$$
\begin{aligned}
& d^{\prime} \leftarrow d \\
& c^{\prime} \leftarrow c \\
& b^{\prime} \leftarrow b \\
& a^{\prime} \leftarrow a
\end{aligned}
$$

Intuition: Why destroying SSA before RA is bad

Parallel copies
$\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \leftarrow(a, b, c, d)$

Sequential copies

$$
\begin{aligned}
& d^{\prime} \leftarrow d \\
& c^{\prime} \leftarrow c \\
& b^{\prime} \leftarrow b \\
& a^{\prime} \leftarrow a
\end{aligned}
$$

$a b c d$

abcd

Intuition: Why destroying SSA before RA is bad

Parallel copies

$$
\left(a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}\right) \leftarrow(a, b, c, d)
$$

Sequential copies

$$
\begin{aligned}
& d^{\prime} \leftarrow d \\
& c^{\prime} \leftarrow c \\
& b^{\prime} \leftarrow b \\
& a^{\prime} \leftarrow a
\end{aligned}
$$

Summary

■ IGs of SSA-form programs are chordal

- The dominance relation induces a PEO

■ No further spills after pressure is lowered

- Register assignment optimal in linear time

■ Do not need to construct interference graph

- Allocator without iteration

