
SSA-Form Register Allocation
Foundations

Sebastian Hack

Compiler Construction Course
Winter Term 2017

Saarland University, Computer Science

Overview

1 Graph Theory
Perfect Graphs
Chordal Graphs

2 SSA Form
Dominance
φ-functions

3 Interference Graphs
Non-SSA Interference Graphs
Perfect Elimination Orders
Chordal Graphs

4 Interference Graphs of SSA-form Programs
Dominance and Liveness
Dominance and Interference
Spilling
Implementing φ-functions

5 Intuition

2

Overview

1 Graph Theory
Perfect Graphs
Chordal Graphs

2 SSA Form
Dominance
φ-functions

3 Interference Graphs
Non-SSA Interference Graphs
Perfect Elimination Orders
Chordal Graphs

4 Interference Graphs of SSA-form Programs
Dominance and Liveness
Dominance and Interference
Spilling
Implementing φ-functions

5 Intuition

3

Complete Graphs and Cycles

Complete Graph K 5 Cycle C 5

4

Induced Subgraphs

Graph with a C 4

subgraph
Graph with a C 4

induced subgraph

Note

Induced complete graphs are called cliques

5

Induced Subgraphs

Graph with a C 4

subgraph
Graph with a C 4

induced subgraph

Note

Induced complete graphs are called cliques

5

Clique number and Chromatic number

Definition

ω(G) Size of the largest clique in G

χ(G) Number of colors in a minimum coloring of G

Corollary

ω(G) ≤ χ(G) holds for each graph G

ω(G) 3 2 2 3
χ(G) 3 2 3 3

6

Clique number and Chromatic number

Definition

ω(G) Size of the largest clique in G

χ(G) Number of colors in a minimum coloring of G

Corollary

ω(G) ≤ χ(G) holds for each graph G

ω(G) 3 2 2 3
χ(G) 3 2 3 3

6

Clique number and Chromatic number

Definition

ω(G) Size of the largest clique in G

χ(G) Number of colors in a minimum coloring of G

Corollary

ω(G) ≤ χ(G) holds for each graph G

ω(G) 3 2 2 3
χ(G) 3 2 3 3

6

Perfect Graphs

Definition

G is perfect ⇐⇒ χ(H) = ω(H) for each induced subgraph H of G

perfect?

X X

7

Perfect Graphs

Definition

G is perfect ⇐⇒ χ(H) = ω(H) for each induced subgraph H of G

perfect?

X X

7

Perfect Graphs

Definition

G is perfect ⇐⇒ χ(H) = ω(H) for each induced subgraph H of G

perfect? X X

7

Chordal Graphs

Definition

G is chordal ⇐⇒ G contains no induced cycles longer than 3

chordal?

X X

Theorem

Chordal graphs are perfect

Theorem

Chordal graphs can be colored optimally in O(|V | · ω(G))

8

Chordal Graphs

Definition

G is chordal ⇐⇒ G contains no induced cycles longer than 3

chordal?

X X

Theorem

Chordal graphs are perfect

Theorem

Chordal graphs can be colored optimally in O(|V | · ω(G))

8

Chordal Graphs

Definition

G is chordal ⇐⇒ G contains no induced cycles longer than 3

chordal? X X

Theorem

Chordal graphs are perfect

Theorem

Chordal graphs can be colored optimally in O(|V | · ω(G))

8

Chordal Graphs

Definition

G is chordal ⇐⇒ G contains no induced cycles longer than 3

chordal? X X

Theorem

Chordal graphs are perfect

Theorem

Chordal graphs can be colored optimally in O(|V | · ω(G))

8

Overview

1 Graph Theory
Perfect Graphs
Chordal Graphs

2 SSA Form
Dominance
φ-functions

3 Interference Graphs
Non-SSA Interference Graphs
Perfect Elimination Orders
Chordal Graphs

4 Interference Graphs of SSA-form Programs
Dominance and Liveness
Dominance and Interference
Spilling
Implementing φ-functions

5 Intuition

9

Dominance

Definition

Every use of a variable is dominated by its definition

start

v ← · · ·

· · · ← v

You cannot reach the use without
passing by the definition

Else, you could use uninitialized
variables

Dominance induces a tree on the
control flow graph

Sometimes called strict SSA

10

Dominance

Definition

Every use of a variable is dominated by its definition

start

v ← · · ·

· · · ← v

You cannot reach the use without
passing by the definition

Else, you could use uninitialized
variables

Dominance induces a tree on the
control flow graph

Sometimes called strict SSA

10

What do φ-functions mean?

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

z1 ← x1
z2 ← x2
z3 ← x3

z1 ← y1
z2 ← y2
z3 ← y3

Frequent misconception

Put a sequence of copies in the predecessors

11

What do φ-functions mean?

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

z1 ← x1
z2 ← x2
z3 ← x3

z1 ← y1
z2 ← y2
z3 ← y3

Frequent misconception

Put a sequence of copies in the predecessors

11

What do φ-functions mean?
Lost Copy Problem

x1 ←
x3 ← x1

x3 ← φ(x1, x2)
x2 ← x3 + 1

← x3

x1 ←
x3 ← x1

x2 ← x3 + 1
x3 ← x2

← x3

Cannot simply push copies in predecessor

Copies are also executed if we jump out of the loop

Need to remove critical edges (loopback edge)

12

What do φ-functions mean?
Lost Copy Problem

x1 ←
x3 ← x1

x3 ← φ(x1, x2)
x2 ← x3 + 1

← x3

x1 ←
x3 ← x1

x2 ← x3 + 1
x3 ← x2

← x3

Cannot simply push copies in predecessor

Copies are also executed if we jump out of the loop

Need to remove critical edges (loopback edge)

12

What do φ-functions mean?
Swap Problem

a1 ←
b1 ←

a2 ← φ(a1, b2)
b2 ← φ(b1, a2)

a1 ←
b1 ←
a2 ← a1
b2 ← b1

a2 ← b2
b2 ← a2

a2 overwritten before used

All φs in a block need to be evaluated simultaneously

13

What do φ-functions mean?
Swap Problem

a1 ←
b1 ←

a2 ← φ(a1, b2)
b2 ← φ(b1, a2)

a1 ←
b1 ←
a2 ← a1
b2 ← b1

a2 ← b2
b2 ← a2

a2 overwritten before used

All φs in a block need to be evaluated simultaneously
13

What do φ-functions mean?

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

The Reality

φ-functions correspond to parallel copies on the incoming edges

14

φ-functions and uses

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

Does not fulfill dominance
property

φs do not use their operands in
the φ-block

Uses happen in the predecessors

φr (x1, x2, x3) φr (y1, y2, y3)

(z1, z2, z3)← φw

Split φ-functions in two parts:

Split critical edges

Read part (φr) in the
predecessors

Write part (φw) in the block

Correct modelling of liveness

15

φ-functions and uses

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

Does not fulfill dominance
property

φs do not use their operands in
the φ-block

Uses happen in the predecessors

φr (x1, x2, x3) φr (y1, y2, y3)

(z1, z2, z3)← φw

Split φ-functions in two parts:

Split critical edges

Read part (φr) in the
predecessors

Write part (φw) in the block

Correct modelling of liveness

15

Overview

1 Graph Theory
Perfect Graphs
Chordal Graphs

2 SSA Form
Dominance
φ-functions

3 Interference Graphs
Non-SSA Interference Graphs
Perfect Elimination Orders
Chordal Graphs

4 Interference Graphs of SSA-form Programs
Dominance and Liveness
Dominance and Interference
Spilling
Implementing φ-functions

5 Intuition

16

Non-SSA Interference Graphs
An inconvenient property

Program

a← 1

b← a + a
c ← a + 1
e ← b + 1
← c

d ← 1
e ← a + 1
← d

Interference Graph

a

b

c

e

d

The number of live variables at each instruction (register pressure) is 2

However, we need 3 registers for a correct register allocation

In theory, this gap can be arbitrarily large (Mycielski Graphs)

17

Graph-Coloring Register Allocation
[Chaitin ’80, Briggs ’92, Appel & George ’96, Park & Moon ’04]

Build IG Coalesce Color

Spill

coloring heuristic failed

program changed

Every undirected graph can occur as an interference graph
=⇒ Finding a k-coloring is NP-complete

Color using heuristic
=⇒ Iteration necessary

Might introduce spills although IG is k-colorable

Rebuilding the IG each iteration is costly

18

Graph-Coloring Register Allocation
[Chaitin ’80, Briggs ’92, Appel & George ’96, Park & Moon ’04]

Build IG Coalesce Color

Spill

coloring heuristic failed

program changed

Spill-code insertion is crucial for the program’s performance

Hence, it should be very sensitive to the structure of the program

Place load and stores carefully

Avoid spilling in loops!

Here, it is merely a fail-safe for coloring

18

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c, a,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c, a, b

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c, a, b

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c, a,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

19

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c, d,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c, d, e,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c, d, e, b

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c, d, e,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c, d,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

20

Coloring
PEOs

Graphs with holes larger than 3 have no PEO, e.g.

G has a PEO ⇐⇒ G is chordal

Core Theorem of SSA Register Allocation

The dominance relation in SSA programs induces a PEO in the IG

Thus, SSA IGs are chordal

21

Coloring
PEOs

Graphs with holes larger than 3 have no PEO, e.g.

G has a PEO ⇐⇒ G is chordal

Core Theorem of SSA Register Allocation

The dominance relation in SSA programs induces a PEO in the IG

Thus, SSA IGs are chordal

21

Overview

1 Graph Theory
Perfect Graphs
Chordal Graphs

2 SSA Form
Dominance
φ-functions

3 Interference Graphs
Non-SSA Interference Graphs
Perfect Elimination Orders
Chordal Graphs

4 Interference Graphs of SSA-form Programs
Dominance and Liveness
Dominance and Interference
Spilling
Implementing φ-functions

5 Intuition

22

Liveness and Dominance

Each instruction ` where a variable v is live, is dominated by v

start

v ← · · ·

` : · · ·

· · · ← v

Why?

Assume ` is not dominated by v

Then there’s a path from start to
some usage of v not containing the
definition of v

This cannot be since each value
must have been defined before it is
used

23

Liveness and Dominance

Each instruction ` where a variable v is live, is dominated by v

start

v ← · · ·

` : · · ·

· · · ← v

Why?

Assume ` is not dominated by v

Then there’s a path from start to
some usage of v not containing the
definition of v

This cannot be since each value
must have been defined before it is
used

23

Liveness and Dominance

Each instruction ` where a variable v is live, is dominated by v

start

v ← · · ·

` : · · ·

· · · ← v

Why?

Assume ` is not dominated by v

Then there’s a path from start to
some usage of v not containing the
definition of v

This cannot be since each value
must have been defined before it is
used

23

Interference and Dominance

Assume v ,w interfere, i.e. they are live at some instruction `

Then, v � ` and w � `

Since dominance is a tree, either v � w or w � v

{�,�}v w

Consequences

Each edge in the IG is directed by dominance

The interference graph is an “excerpt” of the dominance relation

24

Interference and Dominance

Assume v ,w interfere, i.e. they are live at some instruction `

Then, v � ` and w � `

Since dominance is a tree, either v � w or w � v

{�,�}v w

Consequences

Each edge in the IG is directed by dominance

The interference graph is an “excerpt” of the dominance relation

24

Interference and Dominance

Assume
�v w

Then, v is live at w

do
m

in
an

ce
su

bt
re

e
of

v

v ← · · ·

w ← · · ·

Why?

If v and w interfere then
there is a place where both
are live

w dominates all places where
w is live

Hence, v is live inside w ’s
dominance tree

Thus, v is live at w

25

Interference and Dominance

Assume
�v w

Then, v is live at w

do
m

in
an

ce
su

bt
re

e
of

v

v ← · · ·

w ← · · ·

both live

← v ← w

Why?

If v and w interfere then
there is a place where both
are live

w dominates all places where
w is live

Hence, v is live inside w ’s
dominance tree

Thus, v is live at w

25

Interference and Dominance

Consider three nodes u, v ,w in the IG:

� �

???

� or �

v

w

u

u is live at w

v is live at w

Thus, they interfere

Conclusion

All variables that . . .

interfere with w

dominate w

. . . are mutually connected in the IG

26

Interference and Dominance

Consider three nodes u, v ,w in the IG:

� �

???

� or �

v

w

u u is live at w

v is live at w

Thus, they interfere

Conclusion

All variables that . . .

interfere with w

dominate w

. . . are mutually connected in the IG

26

Interference and Dominance

Consider three nodes u, v ,w in the IG:

� �

� or �
v

w

u u is live at w

v is live at w

Thus, they interfere

Conclusion

All variables that . . .

interfere with w

dominate w

. . . are mutually connected in the IG

26

Interference and Dominance

Consider three nodes u, v ,w in the IG:

� �

� or �
v

w

u u is live at w

v is live at w

Thus, they interfere

Conclusion

All variables that . . .

interfere with w

dominate w

. . . are mutually connected in the IG

26

Dominance and PEOs

Before a value v is added to a PEO,
add all values whose definitions are dominated by v

A post order walk of the dominance tree defines a PEO

A pre order walk of the dominance tree yields a coloring sequence

IGs of SSA-form programs can be colored optimally in O(ω(G) · |V |)

Without constructing the interference graph itself

27

Spilling

Theorem

For each clique in the IG there is a program point where all nodes in the
clique are live.

� �

�

�
�

�

a

b c

d

Dominance induces a total order inside the clique
⇒ There is a “smallest” value d

All others are live at the definition of d

28

Spilling

Theorem

For each clique in the IG there is a program point where all nodes in the
clique are live.

� �

�

�
�

�

a

b c

d

Dominance induces a total order inside the clique
⇒ There is a “smallest” value d

All others are live at the definition of d
28

Spilling
Consequences

The chromatic number of the IG is exactly determined
by the number of live variables at the labels

Lowering the number of values live at each label to k makes
the IG k-colorable

We know in advance where values must be spilled
=⇒ All labels where the pressure is larger than k

Spilling can be done before coloring and

coloring will always succeed afterwards

Conclusion

No iteration as in Chaitin/Briggs-allocators

No interference graph necessary

29

Spilling
Consequences

The chromatic number of the IG is exactly determined
by the number of live variables at the labels

Lowering the number of values live at each label to k makes
the IG k-colorable

We know in advance where values must be spilled
=⇒ All labels where the pressure is larger than k

Spilling can be done before coloring and

coloring will always succeed afterwards

Conclusion

No iteration as in Chaitin/Briggs-allocators

No interference graph necessary

29

Getting out of SSA

We now have a k-coloring of the SSA interference graph

Can we turn that program into a non-SSA program
and maintain the coloring?

Central question

What to do about φ-functions?

30

Getting out of SSA

We now have a k-coloring of the SSA interference graph

Can we turn that program into a non-SSA program
and maintain the coloring?

Central question

What to do about φ-functions?

30

Φ-Functions

Consider following example

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations

31

Φ-Functions

Consider following example

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations

31

Φ-Functions

Consider following example

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations

31

Φ-Functions

Consider following example

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations

31

Permutations

A permutation can be implemented with copies if one auxiliary
register is available

←
←
←
←

Permutations can be implemented by a series of transpositions
(i.e. swaps)

= ◦

A transposition can be implemented by three xors
without a third register

32

Intuition: Why do SSA IGs do not have cycles?
Why are SSA IGs chordal?

Program Live Ranges

aa← · · ·

bb ← · · ·
cc ← · · ·

dd ← a + b

ee ← c + 1

aa← · · ·

Interference Graph

a

b

c

d

e

How can we create a 4-cycle {a, c , d , e}?

Redefine a =⇒ SSA violated!

33

Intuition: Why do SSA IGs do not have cycles?
Why are SSA IGs chordal?

Program Live Ranges

aa← · · ·

bb ← · · ·
cc ← · · ·

dd ← a + b

ee ← c + 1

aa← · · ·

Interference Graph

a

b

c

d

e

How can we create a 4-cycle {a, c , d , e}?
Redefine a =⇒ SSA violated!

33

Intuition: φ-functions break cycles in the IG

Program and live ranges

a← · · ·

d ← · · ·
e ← a + · · ·
← d

b← · · ·
c ← a + · · ·
e ← b
← c

Interference Graph

d
a

b
c

e

34

Intuition: φ-functions break cycles in the IG

Program and live ranges

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b← · · ·
c ← a + · · ·
e2 ← b
← c

e3 ← φ(e1, e2)

Interference Graph

d
a

b
c

e1

e3

e2

34

Intuition: Why destroying SSA before RA is bad

Parallel copies Sequential copies

(a′, b′, c ′, d ′)← (a, b, c , d)

d ′ ← d
c ′ ← c
b′ ← b
a′ ← a

a

a′

b

b′

c

c ′

d

d ′

a

a′

b

b′

c

c ′

d

d ′

35

Intuition: Why destroying SSA before RA is bad

Parallel copies Sequential copies

(a′, b′, c ′, d ′)← (a, b, c , d)

d ′ ← d
c ′ ← c
b′ ← b
a′ ← a

a

a′

b

b′

c

c ′

d

d ′

a

a′

b

b′

c

c ′

d

d ′

35

Intuition: Why destroying SSA before RA is bad

Parallel copies Sequential copies

(a′, b′, c ′, d ′)← (a, b, c , d)

d ′ ← d
c ′ ← c
b′ ← b
a′ ← a

a

a′

b

b′

c

c ′

d

d ′

a

a′

b

b′

c

c ′

d

d ′

35

Summary

IGs of SSA-form programs are chordal

The dominance relation induces a PEO

No further spills after pressure is lowered

Register assignment optimal in linear time

Do not need to construct interference graph

Allocator without iteration

Spill Color

Coalesce

Φ-Impl.

36

	Graph Theory
	Perfect Graphs
	Chordal Graphs

	SSA Form
	Dominance
	-functions

	Interference Graphs
	Non-SSA Interference Graphs
	Perfect Elimination Orders
	Chordal Graphs

	Interference Graphs of SSA-form Programs
	Dominance and Liveness
	Dominance and Interference
	Spilling
	Implementing -functions

	Intuition

