# Pentagons <br> Based on Logozzo \& Fähndrich. Pentagons: [...] Science of Computer Programming 75(9) 2010 

Sebastian Hack

Compiler Construction
W2017

Saarland University, Computer Science

## Motivation

```
int binarySearch(int[] array, int value) {
    int l = 0, u = array.length - 1;
    while (l <= u) {
        int i = (l + u) / 2;
        int v = array[i];
        if (v == value) return i;
        if (v < value) l = i + 1;
        else u = i - 1;
    }
    return ~l;
}
```

Java requires to throw an exception if the array access is out of bounds.

## Motivation

So the code that is really executed is:

```
int binarySearch(int[] array, int value) {
    int l = 0, u = array.length - 1;
    while (l <= u) {
        int i = (l + u) / 2;
        int v;
        if (i < 0 || i >= array.length) throw new ...
        else v = array[i];
        if (v == value) return i;
        if (v < value) l = i + 1;
        else u = i - 1;
    }
    return ~1;
}
```

■ Apparently, the condition is always true and the compiler should eliminate the bounds check and remove the throw.

- With interval analysis we only get the bound $\mathrm{i} \in[0, \infty]$

■ Domain not powerful enough to provide relational information i < array.length

## Strict Upper Bounds Domain (sub)

■ Represent strict inequalities, like $\mathrm{x}<\mathrm{y}$

- Domain: Var $\rightarrow \mathcal{P}$ (Var)

Map each x to all variables that are strictly greater than x
■ Concretization: $\gamma_{\text {sub }}: s \mapsto\{$ state $\sigma \mid \forall \mathrm{xy}: \mathrm{y} \in s(\mathrm{x}) \Rightarrow \sigma(\mathrm{x})<\sigma(\mathrm{y})\}$

## Strict Upper Bounds Domain (sub)

■ Represent strict inequalities, like $x<y$
■ Domain: Var $\rightarrow \mathcal{P}($ Var $)$
Map each x to all variables that are strictly greater than x
■ Concretization: $\gamma_{\text {sub }}: s \mapsto\{$ state $\sigma \mid \forall \mathrm{xy}: \mathrm{y} \in s(\mathrm{x}) \Rightarrow \sigma(\mathrm{x})<\sigma(\mathrm{y})\}$

- Join: $s \sqcup_{\text {sub }} t: \Longleftrightarrow \lambda \mathrm{x} .(s(\mathrm{x}) \cap t(\mathrm{x}))$ implies ordering via $a \sqsubseteq_{\text {sub }} b \Longleftrightarrow a \sqcup_{\text {sub }} b=b$

■ $\top=\lambda \mathrm{x} . \emptyset \quad$ and $\quad \perp=\lambda \mathrm{x} . \operatorname{Var}$

## Closures

- Because $<$ is transitive, there are many elements in sub that concretize to the same set of states, e.g. consider

$$
\begin{aligned}
s_{1} & =[\mathrm{x} \mapsto\{\mathrm{y}\}, \mathrm{y} \mapsto\{\mathrm{z}\}] \\
s_{2} & =[\mathrm{x} \mapsto\{\mathrm{y}, \mathrm{z}\}, \mathrm{y} \mapsto\{\mathrm{z}\}]
\end{aligned}
$$

for which we have $\gamma\left(s_{1}\right)=\gamma\left(s_{2}\right)$
■ When joining, it actually makes a difference which one we have:

$$
\begin{aligned}
& s_{1} \sqcup[x \mapsto\{z\}]=\top \\
& s_{2} \sqcup[x \mapsto\{z\}]=[x \mapsto\{z\}]
\end{aligned}
$$

■ One can show that $\gamma_{\text {sub }}$ preserves meets and therefore, for all $s, s^{\prime}$ with $\gamma(s)=\gamma\left(s^{\prime}\right)$ we have $\gamma(s)=\gamma(s) \cap \gamma\left(s^{\prime}\right)=\gamma\left(s \sqcap_{\text {sub }} s^{\prime}\right)$

■ Hence, there is a best abstraction $\alpha(c)$ for a given set of concrete states $c=\gamma(s)$

$$
(\alpha \circ \gamma)(s)=\rceil\left\{s^{\prime} \mid \gamma\left(s^{\prime}\right)=\gamma(s)\right\}
$$

## Closures

■ To make the join most precise one could compute the closure $\alpha \circ \gamma$ and join with the best abstractions

■ The closure operator can in practice be expensive: In sub one has to compute the transitive closure of the relation represented by an abstract element

■ In practice other operations that overapproximate the join are imaginable.

## Reduced Product

■ Using sub without intervals does not help in proving the array access in bounds in our example. Information about constants missing

■ Hence: Use both analyses: pentagons $=$ sub $\times$ intervals

## Reduced Product

- In the product, there are typically multiple abstract elements that are concretized to the same value:

$$
\begin{aligned}
& \gamma(\langle\{x \mapsto[0,100], y \mapsto[0,50]\},\{x<y\}\rangle) \\
= & \gamma(\langle\{x \mapsto[0,49], y \mapsto[1,50]\},\{x<y\}\rangle)
\end{aligned}
$$

- Therefore, one also gets a closure operator that gives the best abstraction in sub $\times$ intervals for a given abstraction:

$$
\begin{aligned}
\langle s, b\rangle & \mapsto\left\langle s^{*}, b^{*}\right\rangle \\
b^{*} & =\prod_{\{\mathrm{x}<\mathrm{y}\} \in s} \llbracket \mathrm{x}<\mathrm{y} \rrbracket^{\sharp}(b) \\
s^{*} & =\lambda \mathrm{x} \cdot s(\mathrm{x}) \cup\left\{\mathrm{y} \in \operatorname{Var} \mid \mathrm{x}^{u}<\mathrm{y}^{\ell}\right\} \quad \text { with } b(z)=\left[z^{\ell}, z^{u}\right]
\end{aligned}
$$

## Practice

- Applying this closure operator might be expensive. In pentagons, it is $O\left(\mathrm{Var}^{2}\right)$
- To get the best precision, one has to do it before every operation: join, application of abstract transformer.
- Hence, in practice, one uses
- A less precise but more efficient join, e.g. in Pentagons, ignore sub information for interval join.
- Modified abstract transformers, that integrate information from both domains, intervals and sub. For example, consider subtraction with:

$$
\begin{aligned}
\llbracket \mathrm{r} \leftarrow \mathrm{x}-\mathrm{y} \rrbracket^{\sharp}\langle s, b\rangle & =\left\langle s\left[\mathrm{r} \mapsto s_{r}\right], b\left[\mathrm{r} \mapsto b_{r}\right]\right\rangle \quad \text { with } \\
b_{r} & =\llbracket \mathrm{x}-\mathrm{y} \rrbracket_{\text {intv }}^{\sharp}(b)(\mathrm{r}) \cap\left((\mathrm{y}<\mathrm{x}) \in s ?[1, \infty]: \top_{\text {intv }}\right) \\
s_{r} & =\mathrm{y}^{\ell}>0 ?\{\mathrm{x}\} \cup s(\mathrm{x}): \emptyset
\end{aligned}
$$

