Instruction Selection on SSA Graphs

Sebastian Hack, Sebastian Buchwald, Andreas Zwinkau

Compiler Construction Course W2017

Saarland University, Computer Science

Instruction Selection

Instruction Selection on SSA

■ "Optimal" instruction selection on trees is polynomial
■ SSA programs are directed graphs
\Longrightarrow Data dependence graphs

- Translating back from SSA graphs to trees is not satisfactory

■ "Optimal" instruction selection is NP-complete on DAGs

- The problem is common subexpressions
- Doing it on graphs provides more opportunities for complex instructions:
- Patterns with multiple results
- DAG-like patterns

Instruction Selection on SSA

- Graph Rewriting

■ For every machine instruction specify:

- A set of graphs (patterns) of IR nodes
- Every pattern has associated costs

1 Find all matchings of the patterns in the IR graph
2 Pick a correct and optimal matching
3 Replace each pattern by corresponding machine instruction
\Longrightarrow Result is an SSA graph with machine nodes

Graphs

■ Let $G=(V, E)$ be a directed acyclic graph (DAG)

- Let $O p$ be a set of operators

■ Every node has a degree $\operatorname{deg} v: V \rightarrow \mathbb{N}_{0}$

- Every node $v \in V$ has an operator: op : $V \rightarrow O p$

■ Every operator $o \in O p$ has an arity $\#: O p \rightarrow \mathbb{N}_{0}$
■ Let $\square \in O p$ be an operator with $\# \square=0$

- Nodes with operator \square denote "glue" points in the patterns (later)
- Every node's degree must match the operator's arity:

$$
\# \mathrm{op} v=\operatorname{deg} v
$$

Definition (Program Graph)

A graph G is a program graph if it is acyclic and

$$
\forall v \in V: \text { op } v \neq \square
$$

Patterns

- A graph $P=(V, E)$ is rooted if there exists a node $v \in V_{P}$ such that there is a path from v to every node v^{\prime} in P
- If P is rooted, denote the root by $\mathrm{rt} P$

Definition (Pattern Graph, Pattern)

A graph P is a pattern if
■ it is acyclic and rooted

- op rt $P \neq \square$

■ Note that we explicitly allow nodes with operator \square in patterns

Equivalence of Nodes in Patterns

■ Complex patterns often have common sub-patterns

- Shall be treated as equivalent
- Selecting the common sub-pattern at the Add node shall enable selecting the complex instruction at Store and Load

Equivalence of Nodes in Patterns

Definition (Equivalence of nodes)

Consider two patterns P and Q and two nodes $v \in P, w \in Q$:

$$
\begin{aligned}
v \sim w: \Longleftrightarrow & v=w \\
& \vee(\operatorname{span} v \cong \operatorname{span} w \wedge \mathrm{rt} P \neq v \wedge \mathrm{rt} Q \neq w)
\end{aligned}
$$

- Either the two nodes are identical
- v, w are no pattern roots and their spanned subgraphs are isomorphic

■ span v : induced subgraph that contains all nodes reachable from v

Matching of a Node

■ Let $\mathcal{P}=\left\{P_{1}, P_{2}, \ldots\right\}$ be a set of patterns

- Let G be some program graph

Definition (Matching)

A matching \mathcal{M}_{v} of a node $v \in V_{G}$ with a set of patterns \mathcal{P} is a family of pairs

$$
\mathcal{M}_{v}=\left(\left(P_{i}, \imath_{i}\right)\right)_{i \in I} \quad I \subseteq\{1, \ldots,|\mathcal{P}|\}
$$

of patterns and injective graph morphisms $\imath_{i}: P_{i} \rightarrow G$ satisfying
$v \in \operatorname{ran} \imath_{i} \quad$ and $\quad \mathrm{op} w \neq \square \Longrightarrow \mathrm{op} w=\mathrm{op} \imath_{i}(w) \quad \forall w \in P_{i}$

Matchings

Example

Selection

■ We have computed a covering of the graph
■ i.e. instruction selection possibilities

- Now, find a subset of the covering that leads to good and correct code

■ Cast the problem as a mathematical optimization problem:

Partitioned Boolean Quadratic Programming (PBQP)

PBQP

Let $\mathbb{R}_{\infty}=\mathbb{R}_{+} \cup\{\infty\}$ and

- $\vec{c}_{i} \in \mathbb{R}_{\infty}^{k_{i}}$ be cost vectors
- $C_{i j} \in \mathbb{R}_{\infty}^{k_{i}} \times \mathbb{R}_{\infty}^{k_{j}}$ be cost matrices

Definition (PBQP)

Minimize

$$
\sum_{1 \leq i<j \leq n} \vec{x}_{i}^{\top} \cdot C_{i j} \cdot \vec{x}_{j}+\sum_{1 \leq i \leq n} \vec{x}_{i}^{\top} \cdot \vec{c}_{i}
$$

with respect to

$$
\begin{aligned}
& \vec{x}_{i} \in\{0,1\}^{k_{i}} \\
& \vec{x}_{i}^{\top} \cdot \overrightarrow{1}=1, \quad 1 \leq i \leq n \\
& \vec{x}_{i}^{\top} \cdot C_{i j} \cdot \vec{x}_{j}<\infty, \quad 1 \leq i<j \leq n
\end{aligned}
$$

PBQP

- \vec{x}_{i} are selection vectors
- Exactly one component is 1

■ This selects the component

- Cost matrices relate selection of made in different selection vectors
- Can be modelled as a graph:
- cost vectors are nodes
- matrices are edges
- only draw non-null matrix edges

PBQP as a Graph

- Colors indicate selection vectors $\vec{x}_{i}=(010)^{\top}$ and $\vec{x}_{j}=(10)^{\top}$
- This selection contributes the cost of 6 to the global costs

■ Edge direction solely to indicate order of ij in the matrix subscript

Mapping Instruction Selection to PBQP

Add

Add+Const

Const

Const

Mapping Instruction Selection to PBQP

Cost vectors are defined by node coverings:
■ Let \mathcal{M}_{v} be a node matching of v

- The alternatives of the node are given by partitioning the matchings by equivalence:

$$
\mathcal{M}_{v / \sim}
$$

■ Common sub-patterns have to result in the same choice

- Costs come from an external specification

Mapping Instruction Selection to PBQP

- Matrices have to maintain selection correctness

■ Consider two alternatives

$$
A_{u}=\left(P_{u}, \imath_{u}\right) \quad A_{v}=\left(P_{v}, \imath_{v}\right)
$$

at two nodes u, v connected by an edge $u \rightarrow v$.

- The matrix entry for those alternatives is

$$
c\left(A_{u}, A_{v}\right)= \begin{cases}\infty & \text { op } \imath_{u}^{-1}(v)=\square \text { and } \imath_{v}^{-1}(v) \neq \mathrm{rt} P_{v} \\ \infty & \text { op } \imath_{u}^{-1}(v) \neq \square \text { and } \imath_{u}^{-1}(v) \nsim \imath_{v}^{-1}(v) \\ 0 & \text { else }\end{cases}
$$

Id est:
■ If A_{u} selects a leaf at v, A_{v} has to select a root
■ If A_{u} does not select a leaf, both subpatters have to be equivalent

Example

Program Graph

Example

Patterns

Example

Matchings

Example

PBQP Instance

Reducing the Problem

Optimality-preserving reductions of the problem:

■ Independent edges (e.g. matrix of zeroes):

- Nodes of degree 1:

- Nodes of degree 2:

Reducing the Problem

■ Heuristic Reduction:

Chose the local minimum at a node

- Leads to a linear algorithm

■ Each reduction eliminates at least one edge

- If all edges are reduced, minimizing nodes separately is easy

Summary

■ Map instruction selection to an optimization problem
■ SSA graphs are sparse \Longrightarrow reductions often applied

- In practice: heuristic reduction rarely happens
- Efficiently solvable

■ Convenient mechanism:

- Implementor specifies patterns and costs
- maps each pattern to an machine node
- Rest is automatic
- Criteria for pattern sets that allow for correct selections in every program not discussed here!

Literature

- Sebastian Buchwald and Andreas Zwinkau.

Befehlsauswahl auf expliziten Abhängigkeitsgraphen.
Master's thesis, Universität Karlsruhe (TH), Dec 2008.
Erik Eckstein, Oliver König, and Bernhard Scholz.
Code Instruction Selection Based on SSA-Graphs.
In SCOPES, pages 49-65, 2003.
嗇 Hannes Jakschitsch.
Befehlsauswahl auf SSA-Graphen.
Master's thesis, Universität Karlsruhe, November 2004.

