Bottom-Up Syntax Analysis

Sebastian Hack (based on slides by Reinhard Wilhelm and Mooly Sagiv)

http://compilers.cs.uni-saarland.de

Compiler Construction Core Course 2017 Saarland University

- Functionality and Method
- Example Parsers
- Derivation of a Parser
- Conflicts
- LR(k)–Grammars
- LR(1)-Parser Generation
- Precedence Climbing

Input: A stream of symbols (tokens)

Output: A syntax tree or error

Method: until input consumed or error do

- shift next symbol or reduce by some production
- decide what to do by looking k symbols ahead
- Properties: Constructs the syntax tree in a bottom-up manner
 - Finds the rightmost derivation (in reversed order)
 - Reports error as soon as the already read part of the input is not a prefix of a program (valid prefix property)

Stack	Input	Action	Dead ends
\$	aabb#	shift	reduce $S \rightarrow \epsilon$
\$a	abb#	shift	reduce $S \rightarrow \epsilon$
\$aa	bb#	reduce $S \rightarrow \epsilon$	shift
\$aaS	bb#	shift	reduce $S \rightarrow \epsilon$
\$aaSb	<i>b</i> #	reduce $S \rightarrow aSb$	shift, reduce $S \rightarrow \epsilon$
\$aS	<i>b</i> #	shift	reduce $S \rightarrow \epsilon$
\$aSb	#	reduce $S \rightarrow aSb$	reduce $S \rightarrow \epsilon$
\$ <i>S</i>	#	accept	reduce $S \rightarrow \epsilon$

Issues:

- Shift vs. Reduce
- Reduce $A \rightarrow \beta$, Reduce $B \rightarrow \alpha \beta$

Stack	Input	Action	Dead ends
\$	aa#	shift	
\$a	a#	reduce $A \rightarrow a$	reduce $B \rightarrow a$, shift
\$A	a#	shift	reduce $S \rightarrow A$
\$Aa	#	reduce $B \rightarrow a$	reduce $A \rightarrow a$
\$AB	#	reduce $S \rightarrow AB$	
\$ <i>S</i>	#	accept	

Issues:

- Shift vs. Reduce
- Reduce $A \rightarrow \beta$, Reduce $B \rightarrow \alpha \beta$

- The bottom-up Parser is a shift-reduce parser, each step is a shift: consuming the next input symbol or reduction: reducing a suffix of the stack contents by some production.
- problem is to decide when to stop shifting and make a reduction
- a next right side to reduce is called a handle if reducing too early leads to a dead end, reducing too late buries the handle

Parser decides whether to shift or to reduce based on

- the contents of the stack and
- k symbols lookahead into the rest of the input

Property of the LR–Parser: it suffices to consider the topmost state on the stack instead of the whole stack contents.

From P_G to LR–Parsers for G

- P_G has non-deterministic choice of expansions,
- LL-parsers eliminate non-determinism by looking ahead at expansions,
- LR-parsers pursue all possibilities in parallel (corresponds to the subset-construction in NFSM \rightarrow DFSM).

Derivation:

- 1. Characteristic finte-state machine of G, a description of P_G
- 2. Make deterministic
- 3. Interpret as control of a push down automaton
- 4. Check for "inedaquate" states

Characteristic Finite-State Machine of G

... is a NFSM $ch(G) = (Q_c, V_c, \Delta_c, q_c, F_c)$:

• states are the items of G

 $Q_c = It_G$

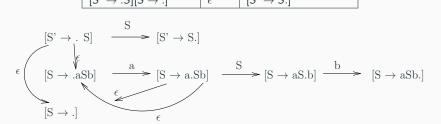
- input alphabet are terminals and non-terminals $V_c = V_T \cup V_N$
- start state $q_c = [S' \rightarrow .S]$
- final states are the complete items $F_c = \{ [X \rightarrow \alpha.] \mid X \rightarrow \alpha \in P \}$
- Transitions:

$$\Delta_{c} = \{ ([X \rightarrow \alpha.Y\beta], Y, [X \rightarrow \alpha Y.\beta]) \mid X \rightarrow \alpha Y\beta \in P \text{ and} \\ Y \in V_{N} \cup V_{T} \} \\ \cup \{ ([X \rightarrow \alpha.Y\beta], \varepsilon, [Y \rightarrow .\gamma]) \mid X \rightarrow \alpha Y\beta \in P \text{ and} \\ Y \rightarrow \gamma \in P \}$$

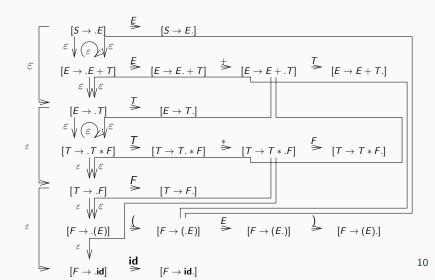
Item PDA and Characteristic NFA

for G_{ab} : $S \rightarrow aSb|\epsilon$ and $ch(G_{ab})$

Stack	Input	New Stack
$[S' \rightarrow .S]$	ε	[S' ightarrow .S][S ightarrow .aSb]
[S' ightarrow .S]	ϵ	[S' ightarrow .S][S ightarrow .]
[S ightarrow .aSb]	а	[S ightarrow a.Sb]
[S ightarrow a.Sb]	ε	[S ightarrow a.Sb][S ightarrow .aSb]
[S ightarrow a.Sb]	ε	[S ightarrow a.Sb][S ightarrow .]
[S ightarrow aS.b]	Ь	[S ightarrow aSb.]
[S ightarrow a.Sb][S ightarrow .]	ε	[S ightarrow aS.b]
$[S \rightarrow a.Sb][S \rightarrow aSb.]$	ε	[S ightarrow aS.b]
$[S' \rightarrow .S][S \rightarrow aSb.]$	ε	[S' ightarrow S.]
$[S' \rightarrow .S][S \rightarrow .]$	ϵ	[S' ightarrow S.]



 $S \rightarrow E, E \rightarrow E+T \mid T, T \rightarrow T*F \mid F, F \rightarrow (E) \mid id$



Interpreting ch(G)

State of ch(G) is the *current* state of P_G , i.e. the state on top of P_G 's stack. Adding actions to the transitions and states of ch(G) to describe P_G :

 ε -transitions: push new state of ch(G) onto stack of P_G : new current state.

reading transitions: shifting transitions of P_G : replace current state of P_G by the shifted one.

final state: Correspond to the following actions in P_G :

- pop final state $[X \rightarrow \alpha]$ from the stack,
- do a transition from the new topmost state under *X*,
- push the new state onto the stack.

Handles and Viable Prefixes

Some Abbreviations: RMD: rightmost derivation RSF: right sentential form

Consider a RMD of cfg G:

$$S' \stackrel{*}{\Longrightarrow} \beta X u \stackrel{}{\Longrightarrow} \beta \alpha u$$

• α is a handle of $\beta \alpha u$.

The part of a RSF next to be reduced.

Each prefix of βα is a viable prefix.
 A prefix of a RSF stretching at most up to the end of the handle, i.e. reductions if possible then only at the end.

RSF (<u>handle</u>)	viable prefix	Reason
$E + \underline{F}$	E, E+, E+F	$S \Longrightarrow_{rm} E \Longrightarrow_{rm} E + T \Longrightarrow_{rm} E + F$
<i>T</i> * <u>id</u>	T, T*, T* id	$S \stackrel{\text{in }}{\underset{rm}{\Rightarrow}} T * F \underset{rm}{\Longrightarrow} T * \mathbf{id}$
<u>F</u> * id	F	$S \stackrel{4}{\Longrightarrow} T * \mathbf{id} {\Longrightarrow} F * \mathbf{id}$
$T * \mathbf{\underline{id}} + \mathbf{id}$	T, T*, T* id	$S \stackrel{3}{\Longrightarrow} T * F \stackrel{3}{\Longrightarrow} T * \mathbf{id}$

Valid Items

 $[X \rightarrow \alpha.\beta]$ is valid for the viable prefix $\gamma \alpha$, if there exists a RMD

$$S' \stackrel{*}{\Longrightarrow} \gamma X w \stackrel{}{\Longrightarrow} \gamma \alpha \beta w$$

An item valid for a viable prefix gives one interpretation of the parsing situation.

Some viable prefixes of G_0 :

Viable Prefix	Valid Items	Reason	γ	w	x	α	β
E+	$[E \rightarrow E + .T]$	$S \xrightarrow[rm]{rm} E \xrightarrow[rm]{rm} E + T$	ε	ε	Е	E+	Т
	$[T \rightarrow .F]$	$S \xrightarrow{*}_{rm} E + T _{rm} E + F$	E+	ε	Т	ε	F
	$[F \rightarrow .id]$	$S \xrightarrow{*}_{rm} E + F _{rm} E + \mathrm{id}$	E+	ε	F	ε	id
(<i>E</i> + ($[F \rightarrow (.E)]$	$S \xrightarrow{*}_{rm} (E + F)$	(E+)	F	(E)
		$\xrightarrow[rm]{}$ $(E + (E))$					

Given some input string xuvw.

The RMD $S' \stackrel{*}{\underset{rm}{\longrightarrow}} \gamma Xw \stackrel{*}{\underset{rm}{\longrightarrow}} \gamma \alpha \beta w \stackrel{*}{\underset{rm}{\longrightarrow}} \gamma \alpha vw \stackrel{*}{\underset{rm}{\longrightarrow}} \gamma uvw \stackrel{*}{\underset{rm}{\longrightarrow}} xuvw$ describes the following sequence of partial derivations: $\gamma \stackrel{*}{\underset{rm}{\longrightarrow}} x \qquad \alpha \stackrel{*}{\underset{rm}{\longrightarrow}} u \qquad \beta \stackrel{*}{\underset{rm}{\longrightarrow}} v \qquad X \stackrel{*}{\underset{rm}{\longrightarrow}} \alpha \beta$ $S' \stackrel{*}{\underset{rm}{\longrightarrow}} \gamma Xw$

performed by the bottom-up parser in this order.

The valid item $[X \to \alpha . \beta]$ for the viable prefix $\gamma \alpha$ describes the situation after partial derivation 2, that is, for RSF $\gamma \alpha vw$

Theorems

$$ch(G) = (Q_c, V_c, \Delta_c, q_c, F_c)$$

Theorem

For each viable prefix there is at least one valid item.

Every parsing situation is described by at least one valid item.

Theorem

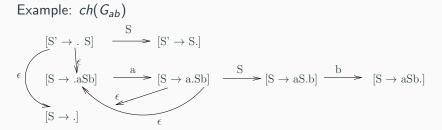
Let $\gamma \in (V_T \cup V_N)^*$ and $q \in Q_c$. $(q_c, \gamma) \vdash^*_{_{ch(G)}} (q, \varepsilon)$ iff γ is a viable prefix and q is a valid item for γ .

A viable prefix brings ch(G) from its initial state to all its valid items.

Theorem

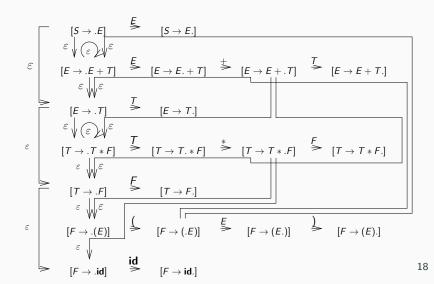
The language of viable prefixes of a cfg is regular.

Apply **NFSM** \rightarrow **DFSM** to ch(G): Result $LR_0(G)$.



 $LR_0(G_{ab})$:

 $S \rightarrow E, E \rightarrow E+T \mid T, T \rightarrow T*F \mid F, F \rightarrow (E) \mid id$



 $LR_0(G_0)$

 $S \rightarrow E, E \rightarrow E+T \mid T, T \rightarrow T*F \mid F, F \rightarrow (E) \mid id$



The States of $LR_0(G_0)$ as Sets of Items

20

Theorems

$$ch(G) = (Q_c, V_c, \Delta_c, q_c, F_c)$$
 and $LR_0(G) = (Q_d, V_N \cup V_T, \Delta, q_d, F_d)$

Theorem

Let γ be a viable prefix and $p(\gamma) \in Q_d$ be the uniquely determined state, into which $LR_0(G)$ transfers out of the initial state by reading γ , i.e., $(q_d, \gamma) \models_{LR0(G)}^* (p(\gamma), \varepsilon)$. Then

(a)
$$p(\varepsilon) = q_d$$

(b)
$$p(\gamma) = \{q \in Q_c \mid (q_c, \gamma) \vdash^*_{_{ch(G)}} (q, \varepsilon)\}$$

(c) $p(\gamma) = \{i \in It_G \mid i \text{ valid for } \gamma\}$

(d) Let Γ the (in general infinite) set of all viable prefixes of G. The mapping $p: \Gamma \rightarrow Q_d$ defines a finite partition on Γ .

(e) $L(LR_0(G))$ is the set of viable prefixes of G that end in a handle.

 $\gamma = E + F$ is a viable prefix of G_0 . With the state $p(\gamma) = S_3$ are also associated:

F, (F, ((F, (((F, ..., T * (F, T * (((F, ..., E + F, E + (F, E + ((F, ..., E + (F, E + ((F, ..., E + (F, E + (F, E + (F, ..., E + (F, E + (

Consider S_6 in $LR_0(G_0)$. It consists of all valid items for the viable prefix E+, i.e., the items

 $[E \rightarrow E + .T], [T \rightarrow .T * F], [T \rightarrow .F], [F \rightarrow .id], [F \rightarrow .(E)].$

Reason:

$$\begin{array}{cccc} E+ \text{ is prefix of the RSF } E+T ;\\ S \underset{rm}{\Longrightarrow} E \underset{rm}{\Longrightarrow} E+T & \underset{rm}{\Longrightarrow} E+F & \underset{rm}{\Longrightarrow} E+\mathbf{id} \\ & \uparrow & \uparrow & \uparrow & \text{are} \\ \end{array}$$
Therefore $[E \rightarrow E+.T] & [T \rightarrow .F] & [F \rightarrow .\mathbf{id}] \\ \text{valid.} \end{array}$

 $LR_0(G)$ interpreted as a PDA $P_0(G) = (\Gamma, V_T, \Delta, q_0, \{q_f\})$

- Γ (stack alphabet): the set Q_d of states of $LR_0(G)$.
- $q_0 = q_d$ (initial state): in the stack of $P_0(G)$ initially.
- $q_f = \{[S' \rightarrow S.]\}$ the final state of $LR_0(G)$,
- Δ ⊆ Γ* × (V_T ∪ {ε}) × Γ* (transition relation): Defined as follows:

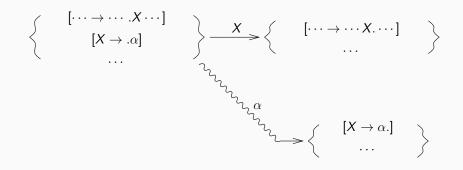
$LR_0(G)$'s Transition Relation

shift: $(q, a, q \, \delta_d(q, a)) \in \Delta$, if $\delta_d(q, a)$ defined. Read next input symbol a and push successor state of q under a (item $[X \rightarrow \cdots .a \cdots] \in q$). reduce: $(q \, q_1 \dots q_n, \varepsilon, q \, \delta_d(q, X)) \in \Delta$, if $[X \rightarrow \alpha.] \in q_n, \ |\alpha| = n$. Remove $|\alpha|$ entries from the stack. Push the successor of the new topmost state under Xonto the stack.

Note the difference in the stacking behavior:

- the Item PDA *P*_G keeps on the stack only one item for each production under analysis,
- the PDA described by the LR₀(G) keeps |α| states on the stack for a production X → αβ represented with item [X → α.β]

Reduction in PDA $P_0(G)$



- also works for reductions of ϵ ,
- each state has a unique entry symbol,
- the stack contents uniquely determine a viable prefix,
- current state (topmost) is the state associated with this viable prefix,
- current state consists of all items valid for this viable prefix.

 $P_0(G)$ is non-deterministic if either

Shift-reduce conflict: There are shift as well as reduce transitions out of one state, or

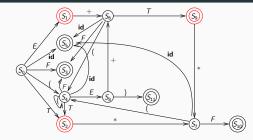
Reduce-reduce conflict: There are more than one reduce transitions from one state.

States with a shift-reduce conflict have at least one read item $[X \rightarrow \alpha . a \beta] \text{ and at least one complete item}$ $[Y \rightarrow \gamma.].$

States with a reduce-reduce conflict have at least two complete items $[Y \rightarrow \alpha.], [Z \rightarrow \beta.].$

A state with a conflict is **inadequate**.

Some Inadequate States



 $LR_0(G_0)$ has three inadequate states, S_1 , S_2 and S_9 .

- S_1 : Can reduce E to S (complete item $[S \rightarrow E.]$) or read "+" (shift-item $[E \rightarrow E. + T]$);
- S_2 : Can reduce T to E (complete item $[E \rightarrow T.]$) or read "*" (shift-item $[T \rightarrow T.*F]$);
- S_9 : Can reduce E + T to E (complete item $[E \rightarrow E + T.]$) or read "*" (shift-item $[T \rightarrow T. * F]$).

Adding Lookahead

- LR(k) item $[X \rightarrow \alpha_1.\alpha_2, L]$ if $X \rightarrow \alpha_1\alpha_2 \in P$ and $L \subseteq V_{T\#}^{\leq k}$
- LR(0) item [X $\rightarrow \alpha_1.\alpha_2$] is called core of [X $\rightarrow \alpha_1.\alpha_2, L$]
- lookahead set L of $[X \rightarrow \alpha_1.\alpha_2, L]$
- $[X \rightarrow \alpha_1.\alpha_2, L]$ is valid for a viable prefix $\alpha \alpha_1$ if

$$S' \# \stackrel{*}{\Longrightarrow} \alpha X w \stackrel{*}{\Longrightarrow} \alpha \alpha_1 \alpha_2 w$$

and

$$L = \{ u \mid S' \# \stackrel{*}{\underset{rm}{\Longrightarrow}} \alpha X w \stackrel{*}{\underset{rm}{\Longrightarrow}} \alpha \alpha_1 \alpha_2 w \text{ and } u = k : w \}$$

The context-free items can be regarded as LR(0)-items if $[X \rightarrow \alpha_1.\alpha_2, \{\varepsilon\}]$ is identified with $[X \rightarrow \alpha_1.\alpha_2]$.

1. $[E \rightarrow E + . T, \{\}, +, \#\}]$ is a valid LR(1)-item for (E+2. $[E \rightarrow T., \{*\}]$ is not a valid LR(1)-item for any viable prefix

Reasons:

1.
$$S' \stackrel{*}{\underset{rm}{\longrightarrow}} (E) \stackrel{}{\underset{rm}{\longrightarrow}} (E+T) \stackrel{*}{\underset{rm}{\longrightarrow}} (E+T+i\mathbf{d})$$
 where
 $\alpha = (, \ \alpha_1 = E+, \ \alpha_2 = T, \ u = +, \ w = +i\mathbf{d})$

2. The string E* can occur in no RMD.

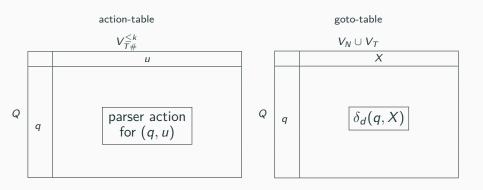
LR–Parser

Take their decisions (to shift or to reduce) by consulting

- the viable prefix γ in the stack, actually the by γ uniquely determined state (on top of the stack),
- the next k symbols of the remaining input.
- Recorded in an action-table.
- The entries in this table are:

shift:	read next input symbol;
reduce ($X \rightarrow \alpha$):	reduce by production $X ightarrow lpha$;
error:	report error
accept:	report successful termination.

A **goto**-table records the transition function of characteristic automaton



Action table

Goto table

state	state sets of items		symbols			
		а	b	#		
0	$\left\{\begin{array}{l} [S' \rightarrow .S],\\ [S \rightarrow .aSb],\\ [S \rightarrow .]\}\end{array}\right\}$	s		$r(S o \epsilon)$		
1	$\left\{\begin{array}{c} [S \rightarrow a.Sb],\\ [S \rightarrow .aSb],\\ [S \rightarrow .]\} \end{array}\right\}$	s	$r(S ightarrow \epsilon)$			
2	$\{[S ightarrow aS.b]\}$		5			
3	$\{[S ightarrow aSb.]\}$		r(S ightarrow aSb)	r(S ightarrow aSb)		
4	$\{[S' o S.]\}$			accept		

state		symbol				
	а	b	#	S		
0	1			4		
1	1			2		
2		3				
3						
4						

Stack	Input	Action
\$0	aabb#	shift 1
\$01	abb#	shift 1
\$011	bb#	reduce $S \rightarrow \epsilon$
\$0112	bb#	shift 3
\$01123	<i>b</i> #	reduce $S \rightarrow aSb$
\$012	b#	shift 3
\$0123	#	reduce $S \rightarrow aSb$
\$04	#	accept

type *state* = set of item;

var lookahead: symbol;

(* the next not yet consumed input symbol *)

S : stack of state;

proc scan;

(* reads the next symbol into *lookahead* *)

```
proc acc;
```

```
(* report successful parse; halt *)
```

```
proc err(message: string);
```

```
(* report error; halt *)
```

```
scan; push(S, q_d);
forever do
   case action[top(S), lookahead] of
     shift: begin push(S, goto[top(S), lookahead]);
                     scan
             end :
     reduce (X \rightarrow \alpha): begin
                               pop^{|\alpha|}(S); push(S, goto[top(S), X]);
                               output("X \rightarrow \alpha")
                           end ;
     accept: acc;
     error: err("...");
   end case
od
```

Set of LR(1)-items I has a

shift-reduce-conflict:

if exists at least one item $[X \rightarrow \alpha.a\beta, L_1] \in I$ and at least one item $[Y \rightarrow \gamma., L_2] \in I$, and if $a \in L_2$.

reduce-reduce-conflict:

if it contains at least two items $[X \rightarrow \alpha, L_1]$ and $[Y \rightarrow \beta, L_2]$ where $L_1 \cap L_2 \neq \emptyset$.

A state with a conflict is called **inadequate**.

Example from G_0

$$\begin{array}{ll} S_{2}' = & \textit{Closure}(\textit{Succ}(S_{0}', T)) \\ &= \{ [E \ \rightarrow \ T., \{\#, +\}], \\ & [T \ \rightarrow \ T. * F, \{\#, +, *\}] \ \} \end{array}$$

Inadequate LR(0)-states S_1 , S_2 und S_9 are adequate after adding lookahead sets.

 S'_1 shifts under "+", reduces under "#". S'_2 shifts under "*", reduces under "#" and "+", S'_9 shifts under "*", reduces under "#" and "+". G_0 encodes operator precedence and associativity and used lookahead in an LR(1) parser to disambiguate.

Idea: Use ambiguous grammar G'_0 :

$$E \rightarrow E + E \mid E * E \mid id \mid (E)$$

and operator precedence and associativity to disambiguate directly.

... contains two states:

with shift reduce conflicts.

In both states, the parser can reduce or shift either + or *.

$ch(G'_0)$ conflicts in detail

- Consider the input id + id * id
 - and let the top of the stack be S_7 .
 - If reduce, then + has higher precendence than *
 - If shift, then + has lower precendence than *

• Consider the input $\mathbf{id} + \mathbf{id} + \mathbf{id}$

and let the top of the stack be S_7 .

- If reduce, + is left-associative
- If shift, + is right-associative

Simple Implementation for Expression Parser

- Model precedence/assoc with left and right precedence
- Shift/reduce mechanism implemented with loop and recursion:

```
Expression parseExpression(Precedence precedence) {
  Expression expr = parsePrimary();
  for (;;) {
    TokenKind kind = currToken.getKind();
    // if operator in lookahead has less left precedence: reduce
    if (kind.getLPrec() < precedence)</pre>
      return expr;
    // else shift
    nextToken():
    // and parse other operand with right precedence
    Expression right = parseExpression(kind.getRPrec());
    expr = factory.createBinaryExpression(t, expr, right);
  }
  return expr;
}
```