Lexical Analysis

Reinhard Wilhelm, Sebastian Hack, Mooly Sagiv
Saarland University, Tel Aviv University
http://compilers.cs.uni-saarland.de

Compiler Construction Core Course 2017
Saarland University

Today

- Role of lexical analysis
- Regular languages, regular expressions
- Finite-state machines
- From regular expressions to finite-state machines
- A language for specifying lexical analysis
- The generation of a scanner
- Flex

Lexical Analysis (Scanning)

- Functionality

Input: program as sequence of characters
Output: program as sequence of symbols (tokens)

- Report errors, symbols illegal in the programming language
- Additional bookkeeping:
- Identify language keywords and standard identifiers
- Eliminate "whitespace", e.g., consecutive blanks and newlines
- Track text coordinates for error report generation
- Construct table of all symbols occurring (symbol table)

Automatic Generation of Lexical Analyzers

- The symbols of programming languages can be specified by regular expressions.
- Examples:
- program as a sequence of characters.
- (alpha (alpha | digit)*) for identifiers
- "/*" until "*/" for comments
- The recognition of input strings can be performed by a finite-state machine.
- A table representation or a program for the automaton is automatically generated from a regular expression.

Automatic Generation of Lexical Analyzers cont'd

input-program
scanner-program

Notations

A language L is a set of words x over an alphabet Σ.

$$
\begin{array}{ll}
a_{1} a_{2} \ldots a_{n}, & \text { a word over } \Sigma, a_{i} \in \Sigma \\
\varepsilon & \text { The empty word } \\
\Sigma^{n} & \text { The words of length } n \text { over } \Sigma \\
\Sigma^{*} & \text { The set of finite words over } \Sigma \\
\Sigma^{+} & \text {The set of non-empty finite words over } \Sigma \\
x \cdot y & \text { The concatenation of } x \text { and } y
\end{array}
$$

Language Operations

$L_{1} \cup L_{2}$		Union
$L_{1} L_{2}$	$=\left\{x \cdot y \mid x \in L_{1}, y \in L_{2}\right\}$	Concatenation
\bar{L}	$=\Sigma^{*}-L$	Complement
L^{n}	$=\left\{x_{1} \ldots x_{n} \mid x_{i} \in L, 1 \leq i \leq n\right\}$	
L^{*}	$=\bigcup_{n \geq 0} L^{n}$	Closure
L^{+}	$=\bigcup_{n \geq 1} L^{n}$	

Regular Languages

Defined inductively

- \emptyset is a regular language over Σ
- $\{\varepsilon\}$ is a regular language over Σ
- For all $a \in \Sigma,\{a\}$ is a regular language over Σ
- If R_{1} and R_{2} are regular languages over Σ, then so are:
- $R_{1} \cup R_{2}$,
- $R_{1} R_{2}$, and
- R_{1}^{*}

Regular Expressions and the Denoted Regular Languages

Defined inductively

- $\underline{\emptyset}$ is a regular expression over Σ denoting \emptyset,
- $\underline{\varepsilon}$ is a regular expression over Σ denoting $\{\varepsilon\}$,
- For all $a \in \Sigma, a$ is a regular expression over Σ denoting $\{a\}$,
- If r_{1} and r_{2} are regular expressions over Σ denoting R_{1} and R_{2}, resp., then so are:
- $\left(r_{1} \mid r_{2}\right)$, which denotes $R_{1} \cup R_{2}$,
- $\left(r_{1} r_{2}\right)$, which denotes $R_{1} R_{2}$, and
- $\left(r_{1} \underline{I}^{*}\right.$, which denotes R_{1}^{*}.
- Metacharacters, $\underline{\emptyset}, \underline{\varepsilon}, \underline{(}, \underline{)}, \underline{\underline{L}}, \underline{*}$ don't really exist, are replaced by their non-underlined versions. Clash between characters in Σ and metacharacters $\left\{(\underline{(}), \underline{,},{ }_{-}^{*}\right\}$

Example

Expression	Language	Example words
$a \mid b$	$\{a, b\}$	a, b
$a b^{*} a$	$\{a\}\{b\}^{*}\{a\}$	$a a, a b a, a b b a, a b b b a, \ldots$
$(a b)^{*}$	$\{a b\}^{*}$	$\varepsilon, a b, a b a b, \ldots$
$a b b a$	$\{a b b a\}$	$a b b a$

Automata

- process input
- make transitions from configurations to configurations;
- configurations consist of (the rest of) the input and some memory;
- the memory may be small, just one variable with finitely many values,
- but the memory may also be able to grow without bound, adding and removing values at one of its ends;
- the type of memory determines its ability to recognize a class of languages,

Finite State Machine

A Non-Deterministic Finite-State Machine (NFSM)

$M=\left\langle\Sigma, Q, \Delta, q_{0}, F\right\rangle$ where:

- Σ - finite alphabet
- Q - finite set of states
- $q_{0} \in Q$ - initial state
- $F \subseteq Q$ - final states
- $\Delta \subseteq Q \times(\Sigma \cup\{\varepsilon\}) \times Q$ - transition relation

May be represented as a transition diagram

- Nodes - States
- q_{0} has a special "entry" mark
- final states doubly encircled
- An edge from p into q labeled by a if $(p, a, q) \in \Delta$

Example: Integer and Real Constants

Finite-state machines - Scanners

Finite-state machines

- get an input word,
- start in their initial state,
- make a series of transitions under the characters constituting the input word,
- accept (or reject).

Scanners

- get an input string (a sequence of words),
- start in their initial state,
- attempt to find the end of the next word,
- when found, restart in their initial state with the rest of the input,
- terminate when the end of the input is reached or an error is encountered.

Maximal Munch strategy

Find longest prefix of remaining input that is a legal symbol.

- first input character of the scanner: first "non-consumed" character,
- in final state, and exists transition under the next character: make transition and remember position
- in final state, and no transition under the next character:

symbol found

- actual state not final and no transition under the next character: backtrack to last passed final state
- There is none: Illegal string
- Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in quadratic runtime: \rightarrow exercise

Other Example Automata

- integer constant
- real constant
- identifier
- string
- comments

The Language Accepted by a Finite-State Machine

- $M=\left\langle\Sigma, Q, \Delta, q_{0}, F\right\rangle$
- For $q \in Q, w \in \Sigma^{*},(q, w)$ is a configuration
- The binary relation step on configurations is defined by:

$$
(q, a w) \vdash_{M}(p, w)
$$

if $(q, a, p) \in \Delta$

- The reflexive transitive closure of \vdash_{M} is denoted by \vdash_{M}^{*}
- The language accepted by M

$$
L(M)=\left\{w \in \Sigma^{*} \mid \exists q_{f} \in F:\left(q_{0}, w\right) \vdash_{M}^{*}\left(q_{f}, \varepsilon\right)\right\}
$$

From Regular Expressions to Finite Automata

Theorem

(i) For every regular language R, there exists an NFSM M, such that $L(M)=R$.
(ii) For every regular expression r, there exists an NFSM that accepts the regular language defined by r.

A Constructive Proof for (ii) (Algorithm)

- A regular language is defined by a regular expression r
- Construct an "NFSM" with one final state, q_{f}, and the transition

- Decompose r and develop the NFSM according to the following rules

until only transitions under single characters and ε remain.

Examples

- $a(a \mid 0)^{*}$ over $\Sigma=\{a, 0\}$
- Identifier
- String

Nondeterminism

- Several transitions may be possible under the same character in a given state
- ε-moves (next character is not read) may "compete" with non- ε-moves.
- Deterministic simulation requires "backtracking"

Deterministic Finite-State Machine (DFSM)

- No ε-transitions
- At most one transition from every state under a given character, i.e. for every $q \in Q, a \in \Sigma$,

$$
\left|\left\{q^{\prime} \mid\left(q, a, q^{\prime}\right) \in \Delta\right\}\right| \leq 1
$$

From Non-Deterministic to Deterministic Automata

Theorem

For every NFSM, $M=\left\langle\Sigma, Q, \Delta, q_{0}, F\right\rangle$ there exists a $D F S M$, $M^{\prime}=\left\langle\Sigma, Q^{\prime}, \delta, q_{0}^{\prime}, F^{\prime}\right\rangle$ such that $L(M)=L\left(M^{\prime}\right)$.

A Scheme of a Constructive Proof (Subset Construction)
Construct a DFSM whose states are sets of states of the NFSM.
The DFSM simulates all possible transition paths under an input word in parallel.

Set of new states $\left\{\left\{q_{1}, \ldots, q_{n}\right\} \mid n \geq 1 \wedge \exists w:\left(q_{0}, w\right) \vdash_{M}^{*}\left(q_{i}, \varepsilon\right)\right\}$

The Construction Algorithm

Used in the construction: the set of ε-Successors,
$\varepsilon-S S(q)=\left\{p \mid(q, \varepsilon) \vdash_{M}^{*}(p, \varepsilon)\right\}$

- Starts with $q_{0}^{\prime}=\varepsilon-S S\left(q_{0}\right)$ as the initial DFSM state.
- Iteratively creates more states and more transitions.
- For each DFSM state $S \subseteq Q$ already constructed and character $a \in \Sigma$,

$$
\delta(S, a)=\bigcup_{q \in S} \bigcup_{(q, a, p) \in \Delta} \varepsilon-S S(p)
$$

if non-empty
add new state $\delta(S, a)$ if not previously constructed; add transition from S to $\delta(S, a)$.

- A DFSM state S is accepting (in F^{\prime}) if there exists $q \in S$ such that $q \in F$

Example: $a(a \mid 0)^{*}$

DFSM minimization

DFSM need not have minimal size, i.e. minimal number of states and transitions.
q and p are undistinguishable (have the same acceptance behavior) iff
for all words $w(q, w) \vdash_{M}^{*}$ and $(p, w) \vdash_{M}^{*}$ lead into either F^{\prime} or $Q^{\prime}-F^{\prime}$.

Undistinguishability is an equivalence relation.
Goal: merge undistinguishable states \equiv consider equivalence classes as new states.

DFSM minimization algorithm

- Input a DFSM $M=\left\langle\Sigma, Q, \delta, q_{0}, F\right\rangle$
- Iteratively refine a partition of the set of states, where each set in the partition consists of states so far undistinguishable.
- Start with the partition $\Pi=\{F, Q-F\}$
- Refine the current Π by splitting sets $S \in \Pi$ if there exist $q_{1}, q_{2} \in S$ and $a \in \Sigma$ such that
- $\delta\left(q_{1}, a\right) \in S_{1}$ and $\delta\left(q_{2}, a\right) \in S_{2}$ and $S_{1} \neq S_{2}$
- Note that this assumes that δ is total (can easily be totalized by introducing an error state)
- Merge sets of undistinguishable states into a single state.

Example: $a(a \mid 0)^{*}$

A Language for specifying lexical analyzers

(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)* (ε. $\cdot(0|1| 2|3| 4|5| 6|7| 8 \mid 9)(0|1| 2|3| 4|5| 6|7| 8 \mid 9)^{*}$
$(\varepsilon \mid E(0|1| 2|3| 4|5| 6|7| 8 \mid 9)(0|1| 2|3| 4|5| 6|7| 8 \mid 9)))$

Descriptional Comfort

Character Classes:

Identical meaning for the DFSM (exceptions!), e.g.,
$l e=\mathrm{a}-\mathrm{zA}-\mathrm{Z}$
$d i=0-9$
Efficient implementation: Addressing the transitions indirectly through an array indexed by the character codes.

Symbol Classes:
Identical meaning for the parser, e.g., Identifiers

Comparison operators
Strings

Descriptional Comfort cont'd

Sequences of regular definitions:

$$
\begin{aligned}
A_{1} & =R_{1} \\
A_{2} & =R_{2} \\
& \ldots \\
A_{n} & =R_{n}
\end{aligned}
$$

Sequences of Regular Definitions

Goal: Separate final states for each definition

1. Substitute right sides for left sides
2. Create an NFSM for every regular expression separately;
3. Merge all the NFSMs using ε transitions from the start state;
4. Construct a DFSM;
5. Minimize starting with partition

$$
\left\{F_{1}, F_{2}, \ldots, F_{n}, Q-\bigcup_{i=1}^{n} F_{i}\right\}
$$

Flex Specification

Definitions
\% \%
Rules
\% \%
C-Routines

Flex Example

```
%{
extern int line_number;
extern float atof(char *);
%}
DIG [0-9]
LET [a-zA-Z]
%%
[=#<>+-*] { return(*yytext); }
({DIG}+) { yylval.intc = atoi(yytext); return(301); }
({DIG}*\.{DIG}+(E(\+|\-)?{DIG}+)?)
    {yylval.realc = atof(yytext); return(302); }
\"(\\.|[^\"\\])*\" { strcpy(yylval.strc, yytext);
    return(303); }
"<="
    { return(304); }
:=
\.\.
    { return(305); }
    { return(306); }
```


Flex Example cont'd

```
ARRAY { return(307); }
BOOLEAN { return(308); }
DECLARE { return(309); }
{LET}({LET}|{DIG})* { yylval.symb = look_up(yytext);
    return(310); }
[ \t]+ { /* White space */ }
\n { line_number++; }
    { fprintf(stderr,
    "WARNING: Symbol '%c' is illegal, ignored!\n", *yytext);}
%%
```

