# Lexical Analysis

#### Reinhard Wilhelm, Sebastian Hack, Mooly Sagiv Saarland University, Tel Aviv University

http://compilers.cs.uni-saarland.de

Compiler Construction Core Course 2017 Saarland University

- Role of lexical analysis
- Regular languages, regular expressions
- Finite-state machines
- From regular expressions to finite-state machines
- A language for specifying lexical analysis
- The generation of a scanner
- Flex

### • Functionality

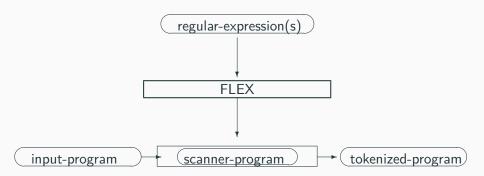
**Input:** program as sequence of characters **Output:** program as sequence of symbols (tokens)

- Report errors, symbols illegal in the programming language
- Additional bookkeeping:
  - Identify language keywords and standard identifiers
  - Eliminate "whitespace", e.g., consecutive blanks and newlines
  - Track text coordinates for error report generation
  - Construct table of all symbols occurring (symbol table)

## Automatic Generation of Lexical Analyzers

- The symbols of programming languages can be specified by regular expressions.
- Examples:
  - program as a sequence of characters.
  - (alpha (alpha | digit)\*) for identifiers
  - "/\*" until "\*/" for comments
- The recognition of input strings can be performed by a finite-state machine.
- A table representation or a program for the automaton is automatically generated from a regular expression.

#### Automatic Generation of Lexical Analyzers cont'd



#### Notations

#### A language *L* is a set of words *x* over an alphabet $\Sigma$ .

| $a_1 a_2 \dots a_n$ , | a word over $\Sigma$ , $a_i \in \Sigma$                      |
|-----------------------|--------------------------------------------------------------|
| ε                     | The empty word                                               |
| $\Sigma^n$            | The words of length $n$ over $\Sigma$                        |
| $\Sigma^*$            | The set of finite words over $\Sigma$                        |
| $\Sigma^+$            | The set of non-empty finite words over $\boldsymbol{\Sigma}$ |
| x.y                   | The concatenation of $x$ and $y$                             |

#### Language Operations

 $\begin{array}{ll} L_1 \cup L_2 & \text{Union} \\ L_1 L_2 &= \{x.y | x \in L_1, y \in L_2\} & \text{Concatenation} \\ \overline{L} &= \Sigma^* - L & \text{Complement} \\ L^n &= \{x_1 \dots x_n | x_i \in L, 1 \leq i \leq n\} \\ L^* &= \bigcup_{n \geq 0} L^n & \text{Closure} \\ L^+ &= \bigcup_{n \geq 1} L^n \end{array}$ 

## Defined inductively

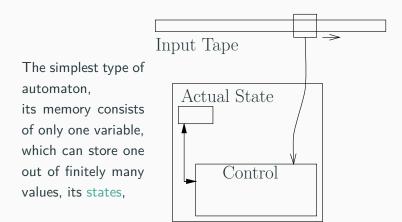
- $\emptyset$  is a regular language over  $\Sigma$
- $\{\varepsilon\}$  is a regular language over  $\Sigma$
- For all  $a \in \Sigma$ ,  $\{a\}$  is a regular language over  $\Sigma$
- If  $R_1$  and  $R_2$  are regular languages over  $\Sigma$ , then so are:
  - $R_1 \cup R_2$ ,
  - $R_1R_2$ , and
  - *R*<sub>1</sub>\*

# Defined inductively

- $\underline{\emptyset}$  is a regular expression over  $\Sigma$  denoting  $\emptyset$ ,
- $\underline{\varepsilon}$  is a regular expression over  $\Sigma$  denoting  $\{\varepsilon\}$ ,
- For all  $a \in \Sigma$ , a is a regular expression over  $\Sigma$  denoting  $\{a\}$ ,
- If  $r_1$  and  $r_2$  are regular expressions over  $\Sigma$  denoting  $R_1$  and  $R_2$ , resp., then so are:
  - $(r_1|r_2)$ , which denotes  $R_1 \cup R_2$ ,
  - $(r_1r_2)$ , which denotes  $R_1R_2$ , and
  - $(r_1)^*$ , which denotes  $R_1^*$ .
- Metacharacters, Ø, ε, (, ), |, \* don't really exist, are replaced by their non-underlined versions.
   Clash between characters in Σ and metacharacters {(, ), |, \*}

| Expression     | Language        | Example words                 |  |
|----------------|-----------------|-------------------------------|--|
| alb            | $\{a,b\}$       | a, b                          |  |
| ab*a           | ${a}{b}^{*}{a}$ | aa, aba, abba, abbba,         |  |
| ( <i>ab</i> )* | $\{ab\}^*$      | $arepsilon, ab, abab, \ldots$ |  |
| abba           | {abba}          | abba                          |  |

- process input
- make transitions from configurations to configurations;
- configurations consist of (the rest of) the input and some memory;
- the memory may be small, just one variable with finitely many values,
- but the memory may also be able to grow without bound, adding and removing values at one of its ends;
- the type of memory determines its ability to recognize a class of languages,



# A Non-Deterministic Finite-State Machine (NFSM)

 $M = \langle \Sigma, Q, \Delta, q_0, F 
angle$  where:

- $\Sigma$  finite alphabet
- Q finite set of states
- $q_0 \in Q$  initial state
- $F \subseteq Q$  final states
- $\Delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$  transition relation

May be represented as a transition diagram

- Nodes States
- q<sub>0</sub> has a special "entry" mark
- final states doubly encircled
- An edge from p into q labeled by a if  $(p, a, q) \in \Delta$

# Example: Integer and Real Constants

|                                                       |   | $Di \in \{0,1,\ldots,9\}$ |     | Е   | ε   |               |  |  |  |
|-------------------------------------------------------|---|---------------------------|-----|-----|-----|---------------|--|--|--|
|                                                       | 0 | {1,2}                     | Ø   | Ø   | Ø   |               |  |  |  |
|                                                       | 1 | {1}                       | Ø   | Ø   | Ø   |               |  |  |  |
|                                                       | 2 | {2}                       | {3} | Ø   | Ø   |               |  |  |  |
|                                                       | 3 | {4}                       | Ø   | Ø   | Ø   | $q_0 = 0$     |  |  |  |
|                                                       | 4 | {4}                       | Ø   | {5} | {7} | $F = \{1,7\}$ |  |  |  |
|                                                       | 5 | {6}                       | Ø   | Ø   | Ø   |               |  |  |  |
|                                                       | 6 | {7}                       | Ø   | Ø   | Ø   |               |  |  |  |
|                                                       | 7 | Ø                         | Ø   | Ø   | Ø   |               |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |   |                           |     |     |     |               |  |  |  |

## Finite-state machines

- get an input word,
- start in their initial state,
- make a series of transitions under the characters constituting the input word,
- accept (or reject).

#### Scanners

- get an input string (a sequence of words),
- start in their initial state,
- attempt to find the end of the next word,
- when found, restart in their initial state with the rest of the input,
- terminate when the end of the input is reached or an error is encountered.

Find longest prefix of remaining input that is a legal symbol.

- first input character of the scanner: first "non-consumed" character,
- in final state, and exists transition under the next character: make transition and remember position
- in final state, and no transition under the next character: symbol found
- actual state not final and no transition under the next character: backtrack to last passed final state
  - There is none: Illegal string
  - Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in quadratic runtime:  $\rightarrow$  exercise

## **Other Example Automata**

- integer constant
- real constant
- identifier
- string
- comments

• 
$$M = \langle \Sigma, Q, \Delta, q_0, F \rangle$$

- For  $q \in Q$ ,  $w \in \Sigma^*$ , (q, w) is a configuration
- The binary relation step on configurations is defined by:

$$(q, aw) \vdash_M (p, w)$$

if  $(q, a, p) \in \Delta$ 

- The reflexive transitive closure of  $\vdash_M$  is denoted by  $\vdash_M^*$
- The language accepted by M

$$L(M) = \{w \in \Sigma^* \mid \exists q_f \in F : (q_0, w) \vdash^*_M (q_f, \varepsilon)\}$$

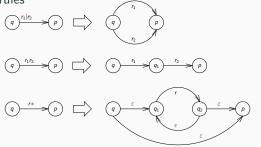
#### Theorem

(i) For every regular language R, there exists an NFSM M, such that L(M) = R.

(ii) For every regular expression r, there exists an NFSM that accepts the regular language defined by r.

# A Constructive Proof for (ii) (Algorithm)

- A regular language is defined by a regular expression r
- Construct an "NFSM" with one final state,  $q_f$ , and the transition (q\_0) - r - (q\_1)
- Decompose *r* and develop the NFSM according to the following rules



until only transitions under single characters and  $\varepsilon$  remain.

a(a|0)\* over Σ = {a, 0}

• Identifier

• String

- Several transitions may be possible under the same character in a given state
- ε-moves (next character is not read) may "compete" with non-ε-moves.
- Deterministic simulation requires "backtracking"

- No ε-transitions
- At most one transition from every state under a given character, i.e. for every q ∈ Q, a ∈ Σ,

$$|\{q'\,|\,(q,a,q')\in\Delta\}|\leq 1$$

# From Non-Deterministic to Deterministic Automata

#### Theorem

For every NFSM,  $M = \langle \Sigma, Q, \Delta, q_0, F \rangle$  there exists a DFSM,  $M' = \langle \Sigma, Q', \delta, q'_0, F' \rangle$  such that L(M) = L(M').

A Scheme of a Constructive Proof (Subset Construction) Construct a DFSM whose states are sets of states of the NFSM. The DFSM simulates all possible transition paths under an input word in parallel.

Set of new states  $\{\{q_1,\ldots,q_n\} \mid n \geq 1 \land \exists w : (q_0,w) \vdash^*_M (q_i,\varepsilon)\}$ 



# The Construction Algorithm

Used in the construction: the set of  $\varepsilon$ -Successors,  $\varepsilon$ -SS $(q) = \{p \mid (q, \varepsilon) \vdash_{M}^{*} (p, \varepsilon)\}$ 

- Starts with  $q'_0 = \varepsilon$ -SS $(q_0)$  as the initial DFSM state.
- Iteratively creates more states and more transitions.
- For each DFSM state S ⊆ Q already constructed and character a ∈ Σ,

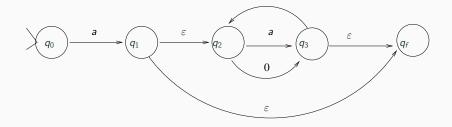
$$\delta(S,a) = \bigcup_{q \in S} \bigcup_{(q,a,p) \in \Delta} \varepsilon \text{-} SS(p)$$

if non-empty

add new state  $\delta(S, a)$  if not previously constructed; add transition from S to  $\delta(S, a)$ .

A DFSM state S is accepting (in F') if there exists q ∈ S such that q ∈ F

# **Example:** $a(a|0)^*$



DFSM need not have minimal size, i.e. minimal number of states and transitions.

q and p are undistinguishable (have the same acceptance behavior) iff

for all words w  $(q, w) \vdash_M^*$  and  $(p, w) \vdash_M^*$  lead into either F' or Q' - F'.



Undistinguishability is an equivalence relation.

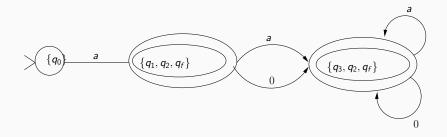
Goal: merge undistinguishable states  $\equiv$  consider equivalence classes as new states.

# DFSM minimization algorithm

- Input a DFSM  $M = \langle \Sigma, Q, \delta, q_0, F \rangle$
- Iteratively refine a partition of the set of states, where each set in the partition consists of states so far undistinguishable.
- Start with the partition  $\Pi = \{F, Q F\}$
- Refine the current  $\Pi$  by splitting sets  $S \in \Pi$  if there exist  $q_1, q_2 \in S$  and  $a \in \Sigma$  such that

•  $\delta(q_1, a) \in S_1$  and  $\delta(q_2, a) \in S_2$  and  $S_1 \neq S_2$ 

- Note that this assumes that  $\delta$  is total (can easily be totalized by introducing an error state)
- Merge sets of undistinguishable states into a single state.



# $\begin{array}{l} (0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^{*} \\ (\varepsilon|.(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)^{*} \\ (\varepsilon|E(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9))) \end{array}$

#### **Character Classes:**

Identical meaning for the DFSM (exceptions!), e.g., le = a - z A - Z di = 0 - 9Efficient implementation: Addressing the transitions indirectly through an array indexed by the character codes.

Symbol Classes:

Identical meaning for the parser, e.g., Identifiers Comparison operators Strings

#### Sequences of regular definitions:

$$\begin{array}{rcl} A_1 & = & R_1 \\ A_2 & = & R_2 \\ & & \ddots \\ A_n & = & R_n \end{array}$$

Goal: Separate final states for each definition

- 1. Substitute right sides for left sides
- 2. Create an NFSM for every regular expression separately;
- 3. Merge all the NFSMs using  $\varepsilon$  transitions from the start state;
- 4. Construct a DFSM;
- 5. Minimize starting with partition

$$\{F_1, F_2, \ldots, F_n, Q - \bigcup_{i=1}^n F_i\}$$

Definitions %% Rules %% C-Routines

#### Flex Example

```
%{
extern int line_number;
extern float atof(char *);
%}
DTG
       [0-9]
LET [a-zA-Z]
%%
[=#<>+-*]
                  { return(*vvtext); }
({DIG}+) { yylval.intc = atoi(yytext); return(301); }
({DIG}*\.{DIG}+(E(\+|\-)?{DIG}+)?)
           {yylval.realc = atof(yytext); return(302); }
\"(\\.|[^\"\\])*\" { strcpy(yylval.strc, yytext);
                     return(303); }
"<="
                  { return(304); }
                  { return(305); }
:=
\.\.
                  { return(306); }
```

```
ARRAY
                  { return(307); }
                  { return(308); }
BOOLEAN
DECLARE
                  { return(309); }
{LET}({LET}|{DIG})* { yylval.symb = look_up(yytext);
                     return(310); }
[ \t]+
                   { /* White space */ }
\n
                   { line_number++; }
                   { fprintf(stderr,
.
   "WARNING: Symbol '%c' is illegal, ignored!\n", *yytext);}
%%
```