
Introduction

Sebastian Hack

http://compilers.cs.uni-saarland.de

Compiler Construction Core Course 2017

Saarland University

1

http://compilers.cs.uni-saarland.de


Why take a compiler course?

• Compilers are everywhere!

web browsers, graphics drivers, databases, phones, etc.

• Compilers are interesting!

We’ll use concepts from automata, graph theory and algorithms, linear

programming, lattice theory, etc.

• Learn the foundations of Syntax Analysis

Helpful when you design your own language

• Learn the foundations of Program Analysis

Helpful beyond compilers (security, verification, PL)

• Improve your software engineering skills

Compilers are sophisticated artifacts that are hard to test and debug

• Very good job market for compiler experts!

• Get some easy 9 CP ;)

2



Compilers

• Compilers translate a program from language S to

language T and thereby implement S in T .

• Typically, S is some “higher” programming language and T

some “low-level” language, like assembly.

• Programming languages provide abstractions to make the life

of the programmer easier

• Their straight-forward implementation in T typically incurs

some overhead (in space and time)

• It is the purpose of the compiler to reduce (remove) this

overhead

• More convenient languages need more powerful compilers

3



Abstractions

High level Low level

Control flow Instruction pointer, jumps

(for, while, functions)

Variable Memory address, register name

Objects1 Memory, registers

Lifetimes Garbage collection, memory management

stack frames

Basic data types Different instruction sets

(int, float)

Compound data types Addresses, index arithmetic

(structs, arrays, etc.)

Parallelism Threads, SIMD instructions

(task, data)

1C Standard terminology: means a container that holds a value

4



Example

sort.c

5



Challenges

• Compile-time has to be sub-quadratic for the common case

• Most relevant code generation problems are at least NP-hard

• Mainly because target machines have resource constraints

(finite amount of memory, registers, parallelism, etc.)

• Target machines become less “standard” (aka heterogeneous)

Think of GPUs, accelerators or even FPGAs

• Target machines become more complex

Memory hierarchy, out-of-order execution, speculation, etc.

• Hence it is often impossible to give a precise notion of

“optimality” with respect to the quality of the code.

• End of Dennard Scaling:

Performance ∼= Performance / Watt

6



Example

matmul.c

7



Compiler Structure: Back in the day

Text Syntax Ana AST Type Chk AST

Opt AST Code Gen ASM

• AST = abstract syntax tree

• Frontend: Dependent on input language

• Backend: Dependent on target language

8



Compiler Structure: Nowadays

Text Syntax Ana AST Type Chk AST

IR Cons IR Opt IR

Code Gen ASM

• intermediate representation (IR) decouples language-specific

AST from code generation

9



Course Structure

Text Syntax Ana AST Type Chk AST

IR Cons IR Opt IR

Code Gen ASM

(4)

Lexing,

LL/LR Parsing

(1)

(1) (8)

Abstract Interpr.,

Lattice Theory,

Scalar Analyses

(SCCP, GVN, In-

tervals, Pentagons),

Liveness, PRE, SSA

Polyhedral Loop

Optimization

(2)

Control Flow,

LLVM

(4)

Instruction Selection,

Register Allocation

(n) Number of lectures 9



Course Organization

• Course website (all materials, dates, etc.):

http://compilers.cs.uni-saarland.de/teaching/cc/2017

• Online discussion forum at:

https://discourse.cdl.uni-saarland.de

• Please register for the forum until 18 Oct 2017 18:00

• Read and follow the First Steps post

• Tutorials Fri 10–12 (location: tba). First session: 27 Oct 2017

• (voluntary) exercise sheets

• Exam and Re-exam (20 Feb 2018, 20 Mar 2018)

• Grade: 50% exam, 50% project (have to pass both)

10

http://compilers.cs.uni-saarland.de/teaching/cc/2017
https://discourse.cdl.uni-saarland.de


Project

• Programming project done in groups of 2–3 students

(present to us end of February 2018 the latest)

• Compiler for a subset of C using LLVM

• Own frontend, own optimizations,

use LLVM as IR and code generator

• Project is organized in milestones

Assignments handed out periodically

• You can test your compiler against our test suite by pushing

to your repo (tests run once a day)

• You can track the progress of all groups on the course web site

• Competition: There will be a prize for the fastest compiler

and for the compiler that produces the fastest code.

Precondition: Pass all tests.

11




