Syntactic Analysis

Sebastian Hack
(based on slides by Reinhard Wilhelm and Mooly Sagiv)

http://compilers.cs.uni-saarland.de

Compiler Construction Core Course 2017
Saarland University

http://compilers.cs.uni-saarland.de

Syntactic Analysis: Topics

Introduction
e The task of syntax analysis
e Automatic generation
e Error handling

Context free grammars, derivations, and parse trees

Grammar Flow Analysis

Pushdown automata

Top-down syntax analysis

Bottom-up syntax analysis

Syntax Analysis (Parsing)

Functionality

Input Sequence of symbols (tokens)
Output Parse tree

Report syntax errors, e,g., unbalanced parentheses

Create “'pretty-printed” version of the program (sometimes)

e In some cases the tree need not be generated (one-pass

compilers)

Handling Syntax Errors

e Report and locate the error (symptom)
e Diagnose the error
e Correct the error

e Recover from the error in order to discover more errors
(without reporting errors caused by others)

Example
a:=ax(b+cxd,
Error Diagnosis Data

e Line number (may be far from the actual error)
e The current symbol

e The symbols expected in the current parser state

Example Context Free Grammar (Section)

Stat — If_Stat |

While_Stat |

Repeat_Stat |

Proc_Call |

Assignment
If_Stat — if Cond then Stat_Seq else Stat_Seq fi |

if Cond then Stat_Seq fi
While_Stat — while Cond do Stat_Seq od
Repeat_ Stat — repeat Stat_Seq until Cond
Proc_Call — Name (Expr_Seq)
Assignment — Name := Expr
Stat_Seq — Stat |

Stat_ Seq; Stat
Expr_Seq — Expr |

Expr_Seq, Expr

Context-Free-Grammar Definition

A context-free-grammar is a quadruple G = (Vy, V1, P, S) where:

e V) — finite set of nonterminals
o V1 — finite set of terminals
e PC Vy x (VyU Vr)* — finite set of production rules

e S ¢ V, — the start nonterminal

Go=({E, T,F},{+,*(,),id}, Py, E)

E —- E+T | T

F = (E) | id

G = ({E}, {Jr, *, (,), id}, P1, E)
Pir={E —- E+E | ExE | (E) | id}

Derivations

Given a context-free-grammar G = (V, V1, P, S)

o = ¢
if there exist ¢1,02 € (VWU V7)*, A€ Vy

* v=9p1 Ay
e A—~acP
* Y=y ap

* . .
e ¢ — 1 reflexive transitive closure

e The language defined by G

L(G)={we Vi |S= w}

Reduced and Extended Context Free Grammars

A nonterminal A is

reachable: There exist o1, ps such that S == ¢1 A,
productive: There exists w € V%, A = w
Removal of unreachable and non-productive nonterminals and the
productions they occur in doesn't change the defined language.

A grammar is reduced if it has neither unreachable nor
non-productive nonterminals.

A grammar is extended if a new startsymbol S’ and a new
production S” — S are added to the grammar.

From now on, we only consider reduced and extended grammars.

Syntax Tree (Parse Tree)

e An ordered tree.

e Root is labeled with S.

e Internal nodes are labeled by nonterminals.
e Leaves are labeled by terminals or by €.

e For internal nodes n:
If nlabeled by N and its children n.1,..., n.n, are labeled by
Ni,..., Ny, then N — Ny,.... N, € P.

10

Leftmost (Rightmost) Derivations

Given a context-free grammar G = (W, V7, P, S)

°«p — ¥ if there exist o1 € VF, @2 € (VWU V7)*, and A€ Vy

e =1 Ay
e A—~acP
* Y=prap

replace leftmost nonterminal

°cp = ¥ if there exist g € VF, @1 € (VWU V7)*, and A€ Vy

e V=01 AP
e A—acP
* Y=prap

replace rightmost nonterminal

¢ v = 1o r:*m> 1 are defined as usual

Im

11

Ambiguous Grammars

e A grammar that has (equivalently)

e two leftmost derivations for the same string,
e two rightmost derivations for the same string,
e two syntax trees for the same string.

is called ambiguous.
e |t is undecidable if a grammar is ambiguous or not

e There are unambiguous grammars (whose languages) cannot
be accepted with a deterministic push-down automaton

e For parsing, we're interested in grammars that can be
accepted with a deterministic push-down automaton

12

