
Syntactic Analysis

Sebastian Hack

(based on slides by Reinhard Wilhelm and Mooly Sagiv)

http://compilers.cs.uni-saarland.de

Compiler Construction Core Course 2017

Saarland University

http://compilers.cs.uni-saarland.de

Syntactic Analysis: Topics

• Introduction

• The task of syntax analysis

• Automatic generation

• Error handling

• Context free grammars, derivations, and parse trees

• Grammar Flow Analysis

• Pushdown automata

• Top-down syntax analysis

• Bottom-up syntax analysis

1

Syntax Analysis (Parsing)

• Functionality

Input Sequence of symbols (tokens)

Output Parse tree

• Report syntax errors, e,g., unbalanced parentheses

• Create “‘pretty-printed” version of the program (sometimes)

• In some cases the tree need not be generated (one-pass

compilers)

2

Handling Syntax Errors

• Report and locate the error (symptom)

• Diagnose the error

• Correct the error

• Recover from the error in order to discover more errors

(without reporting errors caused by others)

Example

a := a ∗ (b + c ∗ d ;

Error Diagnosis Data

• Line number (may be far from the actual error)

• The current symbol

• The symbols expected in the current parser state

3

Example Context Free Grammar (Section)

Stat → If_Stat |

While_Stat |

Repeat_Stat |

Proc_Call |

Assignment

If_Stat → if Cond then Stat_Seq else Stat_Seq fi |

if Cond then Stat_Seq fi

While_Stat → while Cond do Stat_Seq od

Repeat_Stat → repeat Stat_Seq until Cond

Proc_Call → Name (Expr_Seq)

Assignment → Name := Expr

Stat_Seq → Stat |

Stat_Seq; Stat

Expr_Seq → Expr |

Expr_Seq, Expr

4

Context-Free-Grammar Definition

A context-free-grammar is a quadruple G = (VN ,VT ,P,S) where:

• VN — finite set of nonterminals

• VT — finite set of terminals

• P ⊆ VN × (VN ∪ VT)∗ — finite set of production rules

• S ∈ Vn — the start nonterminal

5

Examples

G0 = ({E ,T ,F}, {+, ∗, (,), id},P0,E)

P0 =

E → E + T | T

T → T ∗ F | F

F → (E) | id

G1 = ({E}, {+, ∗, (,), id},P1,E)

P1 = {E → E + E | E ∗ E | (E) | id}

6

Derivations

Given a context-free-grammar G = (VN ,VT ,P,S)

• ϕ =⇒ ψ

if there exist ϕ1, ϕ2 ∈ (VN ∪ VT)∗, A ∈ VN

• ϕ ≡ ϕ1 A ϕ2

• A → α ∈ P

• ψ ≡ ϕ1 α ϕ2

• ϕ
∗

=⇒ ψ reflexive transitive closure

• The language defined by G

L(G) = {w ∈ V
∗

T | S
∗

=⇒ w}

7

Reduced and Extended Context Free Grammars

A nonterminal A is

reachable: There exist ϕ1, ϕ2 such that S
∗

=⇒ ϕ1Aϕ2

productive: There exists w ∈ V ∗

T , A
∗

=⇒ w

Removal of unreachable and non-productive nonterminals and the

productions they occur in doesn’t change the defined language.

A grammar is reduced if it has neither unreachable nor

non-productive nonterminals.

A grammar is extended if a new startsymbol S ′ and a new

production S ′ → S are added to the grammar.

From now on, we only consider reduced and extended grammars.

8

Syntax Tree (Parse Tree)

• An ordered tree.

• Root is labeled with S.

• Internal nodes are labeled by nonterminals.

• Leaves are labeled by terminals or by ε.

• For internal nodes n:

If n labeled by N and its children n.1, . . . , n.np are labeled by

N1, . . . ,Nnp , then N → N1, . . . ,Nnp ∈ P.

9

Examples

E

id

E

E

E

E

id id∗ + +∗id id

E

E

E

E

id

E

++

E

id

E

E

E

E

id id+ +id id

E

E

E

E

id

E

10

Leftmost (Rightmost) Derivations

Given a context-free grammar G = (VN ,VT ,P,S)

• ϕ =⇒
lm

ψ if there exist ϕ1 ∈ V ∗

T , ϕ2 ∈ (VN ∪ VT)∗, and A ∈ VN

• ϕ ≡ ϕ1 A ϕ2

• A → α ∈ P

• ψ ≡ ϕ1 α ϕ2
replace leftmost nonterminal

• ϕ =⇒
rm

ψ if there exist ϕ2 ∈ V ∗

T , ϕ1 ∈ (VN ∪ VT)∗, and A ∈ VN

• ϕ ≡ ϕ1 A ϕ2

• A → α ∈ P

• ψ ≡ ϕ1 α ϕ2
replace rightmost nonterminal

• ϕ
∗

=⇒
lm

ψ, ϕ
∗

=⇒
rm

ψ are defined as usual

11

Ambiguous Grammars

• A grammar that has (equivalently)

• two leftmost derivations for the same string,

• two rightmost derivations for the same string,

• two syntax trees for the same string.

is called ambiguous.

• It is undecidable if a grammar is ambiguous or not

• There are unambiguous grammars (whose languages) cannot

be accepted with a deterministic push-down automaton

• For parsing, we’re interested in grammars that can be

accepted with a deterministic push-down automaton

12

