Syntactic Analysis

Sebastian Hack (based on slides by Reinhard Wilhelm and Mooly Sagiv)

http://compilers.cs.uni-saarland.de

Compiler Construction Core Course 2017 Saarland University

Syntactic Analysis: Topics

• Introduction

- The task of syntax analysis
- Automatic generation
- Error handling
- Context free grammars, derivations, and parse trees
- Grammar Flow Analysis
- Pushdown automata
- Top-down syntax analysis
- Bottom-up syntax analysis

• Functionality

Input Sequence of symbols (tokens)
Output Parse tree

- Report syntax errors, e,g., unbalanced parentheses
- Create "'pretty-printed" version of the program (sometimes)
- In some cases the tree need not be generated (one-pass compilers)

Handling Syntax Errors

- Report and locate the error (symptom)
- Diagnose the error
- Correct the error
- Recover from the error in order to discover more errors (without reporting errors caused by others)

Example

$$a := a * (b + c * d;$$

Error Diagnosis Data

- Line number (may be far from the actual error)
- The current symbol
- The symbols expected in the current parser state

Example Context Free Grammar (Section)

Stat	\rightarrow	If_Stat
		While_Stat
		Repeat_Stat
		Proc_Call
		Assignment
lf_Stat	\rightarrow	if Cond then Stat_Seq else Stat_Seq fi
		if Cond then Stat_Seq fi
While_Stat	\rightarrow	while Cond do Stat_Seq od
Repeat_Stat	\rightarrow	<pre>repeat Stat_Seq until Cond</pre>
Proc_Call	\rightarrow	Name (Expr_Seq)
Assignment	\rightarrow	Name := Expr
Stat_Seq	\rightarrow	Stat
		Stat_Seq; Stat
Expr_Seq	\rightarrow	Expr
		Expr Seq, Expr

A context-free-grammar is a quadruple $G = (V_N, V_T, P, S)$ where:

- V_N finite set of nonterminals
- V_T finite set of terminals
- $P \subseteq V_N \times (V_N \cup V_T)^*$ finite set of production rules
- $S \in V_n$ the start nonterminal

Examples

$$G_{0} = (\{E, T, F\}, \{+, *, (,), id\}, P_{0}, E)$$
$$P_{0} = \begin{cases} E \to E + T \mid T \\ T \to T * F \mid F \\ F \to (E) \mid id \end{cases}$$

$$G_1 = (\{E\}, \{+, *, (,), id\}, P_1, E)$$
$$P_1 = \{E \rightarrow E + E \mid E * E \mid (E) \mid id\}$$

6

Given a context-free-grammar $G = (V_N, V_T, P, S)$

 $\bullet \ \varphi \implies \psi$

if there exist $\varphi_1, \varphi_2 \in (V_N \cup V_T)^*$, $A \in V_N$

- $\varphi \equiv \varphi_1 A \varphi_2$
- $A \rightarrow \alpha \in P$
- $\psi \equiv \varphi_1 \alpha \varphi_2$
- $\varphi \implies \psi$ reflexive transitive closure
- The language defined by G

$$L(G) = \{ w \in V_T^* \mid S \Longrightarrow w \}$$

A nonterminal A is

reachable: There exist φ_1, φ_2 such that $S \stackrel{*}{\Longrightarrow} \varphi_1 A \varphi_2$ **productive:** There exists $w \in V_T^*$, $A \stackrel{*}{\Longrightarrow} w$

Removal of unreachable and non-productive nonterminals and the productions they occur in doesn't change the defined language.

A grammar is reduced if it has neither unreachable nor non-productive nonterminals.

A grammar is extended if a new startsymbol S' and a new production $S' \to S$ are added to the grammar.

From now on, we only consider reduced and extended grammars.

- An ordered tree.
- Root is labeled with S.
- Internal nodes are labeled by nonterminals.
- Leaves are labeled by terminals or by ε .
- For internal nodes n:

If *n* labeled by *N* and its children $n.1, \ldots, n.n_p$ are labeled by N_1, \ldots, N_{n_p} , then $N \rightarrow N_1, \ldots, N_{n_p} \in P$.

Examples

Leftmost (Rightmost) Derivations

Given a context-free grammar $G = (V_N, V_T, P, S)$

- $\varphi \implies \psi$ if there exist $\varphi_1 \in V_T^*$, $\varphi_2 \in (V_N \cup V_T)^*$, and $A \in V_N$
 - $\varphi \equiv \varphi_1 A \varphi_2$
 - $A \to \alpha \in P$
 - $\psi \equiv \varphi_1 \alpha \varphi_2$

replace leftmost nonterminal

- $\varphi \implies_{rm} \psi$ if there exist $\varphi_2 \in V_T^*$, $\varphi_1 \in (V_N \cup V_T)^*$, and $A \in V_N$
 - $\varphi \equiv \varphi_1 A \varphi_2$
 - $A \rightarrow \alpha \in P$
 - $\psi \equiv \varphi_1 \alpha \varphi_2$

replace rightmost nonterminal

•
$$\varphi \stackrel{*}{\Longrightarrow} \psi, \varphi \stackrel{*}{\longrightarrow} \psi$$
 are defined as usual

Ambiguous Grammars

- A grammar that has (equivalently)
 - two leftmost derivations for the same string,
 - two rightmost derivations for the same string,
 - two syntax trees for the same string.

is called ambiguous.

- It is undecidable if a grammar is ambiguous or not
- There are unambiguous grammars (whose languages) cannot be accepted with a deterministic push-down automaton
- For parsing, we're interested in grammars that can be accepted with a deterministic push-down automaton