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if (y < 0)
X

]
o

// A
else

x=1; // B

z=x+1; /J/ C

Value dependence: Data dependence:

e Determines which variables e Relates instructions in the
influence the value of a program based on what
variable storage they access

e Here: z depends on x and y e Here: C depends on A and B

e Foundation of slicing, e Limits freedom how compiler
non-interference, binding can arrange code wrt a
time, divergence analyses given storage allocation



Data Dependence

x < 1
Definition
y « 2 An instruction B is data dependent on A
(write B — A) if and only if
X = XY 1. both access the same storage location x
2. there is a path from A to B and
y <3 e one of them is a write and
e the path contains no further write to x
z +— 4
y <« y+z
X < X+Yy
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Data Dependence

x < 1

Definition
« 92 An instruction B is data dependent on A
(write B — A) if and only if

LaE 1. both access the same storage location x
2. there is a path from A to B and

K— X — <
/]\

«~ 3 e one of them is a write and
e the path contains no further write to x

z +— 4

T Theorem

y <« y+tz

T Any schedule that preserves dependences
preserves the semantics of the program

X < X+Yy



True and False Dependences

x +— 1

There are three kinds of dependences:
RAW: read after write

K— X — <
/]\

Xty WAR: write after read
WAW: write after write
<~ 3 e WAR and WAW are called

false dependences

True dependences express data flow

y+z False dependences are an artifact of
storage allocation

X—> <X —N
/]\

— X+Yy



Removing False Dependences, SSA

X1 1
y1 o 2 False dependences can be eliminated by
T providing unique storage for each

computation, aka
Static Single Assignment (SSA)

Xo < X1+ )1

o « 3 e Unifies variables and instructions

e |nstruction is the variable

z1 +— 4 e Enables graph-based program
T representation
3 & 2tz e All modern compilers use it

|

X3 < X2+ y3



Data Dependence Graphs

X1(—1

Data Dependence Graph
y1 < 2

|

X2 <~ X1+Wwn xal

VAV
L NS

X3 < X2+ y3



Scheduling Computations

x11l 2 »3 z14

o 4 Vot e Storage assignment and parallelism
v\ /v influence each other
X3 4

e More storage

e less false dependences
Schedule 1:  Schedule 2:

Storage = 3  Storage = 4
Latency =5 Latency =3

e more freedom
e more parallelism

e Knowing dependences essential for

X1 Y1 21 X1 Y1 Y2 241 . .
T A tr 27 the compiler to come up with
X2 X2 3 “good” schedules

T T

Y2 X3

1

y3

T

X3



Scheduling Computations

x11l 2 »3 z14
\/ N/
X2

4 Vot ° §torage assignment and parallelism
v\ /\ influence each other
X3 4

e More storage

e less false dependences
Schedule 1:  Schedule 2:

e more freedom
Storage = 3  Storage = 4

e more parallelism
Latency =5 Latency =3

e Knowing dependences essential for

X1 N a X1 Y2 41 . .

T2 2 27 the compiler to come up with

X2 X2 Y3 “good” schedules

T T o

y2 X3 e Unfortunately: Finding schedule
(\y3 that maximizes parallelism and not
il exceeds storage bound is NP-hard
X3



Definition [recap]
An instruction B is data dependent on A
xp 7 if and only if

1. both access the same storage location x
2. there is a path from A to B and

e one of them is a write and

I\/I[a] — x1+1

X '\ £ X2 e the path contains no further write to x

«~— Mi[b
= [b] What if it is not clear what x is?

Here: Dependence if a= b

Undecidable in general

Compiler has to be conservative:
Assume dependence exists 8



Dependence Analysis in Loops

for i = 1 to 4 e Conceptually, unroll loops and
for j =1 to 4

X[i,j] = X[i ,j-1]

+ X[i-1,j-1] e Not practical:

+ X[i-1,j]

construct dependence graph

e Loop bounds not constant

e Graph too big

J ® e We can do better if loops and

subscripts are affine

e Relate instances of instructions

¢ given by iteration vector

e Represent dependences by

polyhedra




Dependence Polyhedra

for i = 1 to N e Relate instances of
for j =1 to N

X[i,jl = x[i ,j-11 // s

+ X[i-1,j-1] e Instances described by

+ X[i-1,5]

instructions

iteration space polyhderon

Dependence polyhedron for accesses
X[i,j] and X[1i,j-1]:

10-1000 5
010-101 :
10000-1 J .
Dss2| 100010 || =0
’ 01000-1 J| =0
0-10010 N
1

10
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Dependence Polyhedra

for i = 1 to N e Loop transformations
for j =1 to N .
schedules) described b
Xli,j] = X[i ,j-11 // 8 ( . )_ y
+ X[i-1,j-1] affine functions ©g for each
+ X[i-1,3j] statement S

e Affine schedules ©5,0 1

Dependence polyhedron for accesses valid iff for all X_)>/ S D57Ti
X[i,j] and X[1i,j-1]: o —
! i ©71(x) > ©s(y)
10-1000 ; _
010-101 . e Via Farkas' Lemma, we get
too0o00-1 | [/] . .
Dsse| 100010 il =0 an affine space of all valid
S T o
8 i g 8(1"(1) JN 20 schedules
1 e Use linear programming to

find a “good” one

10



Affine Schedules

Original Schedule Optimized Schedule
J J

00 e0)-(7)

Inherently sequential Parallelism along the j dimension

11



