Data Dependences

Sebastian Hack

http://compilers.cs.uni-saarland.de

Compiler Construction Core Course 2018
Saarland University

Dependence

```
if (y < 0)
    x = 0; // A
else
    x = 1; // B
z = x + 1; // C
```

Value dependence:

- Determines which variables influence the value of a variable
- Here: z depends on x and y
- Foundation of slicing, non-interference, binding time, divergence analyses

Data dependence:

- Relates instructions in the program based on what storage they access
- Here: C depends on A and B
- Limits freedom how compiler can arrange code wrt a
given storage allocation

Data Dependence

$x \leftarrow 1$
$y \leftarrow 2$
$x \leftarrow x+y$
$y \leftarrow 3$
$z \leftarrow 4$
$y \leftarrow y+z$
$x \leftarrow x+y$

Definition

An instruction B is data dependent on A (write $B \rightarrow A$) if and only if

1. both access the same storage location x
2. there is a path from A to B and

- one of them is a write and
- the path contains no further write to x
$z \leftarrow 4$
$x \leftarrow x+y$

Data Dependence

Definition

An instruction B is data dependent on A
(write $B \rightarrow A$) if and only if

1. both access the same storage location x
2. there is a path from A to B and

- one of them is a write and
- the path contains no further write to x

Data Dependence

Definition

An instruction B is data dependent on A (write $B \rightarrow A$) if and only if

1. both access the same storage location x
2. there is a path from A to B and

- one of them is a write and
- the path contains no further write to x

Theorem

Any schedule that preserves dependences preserves the semantics of the program

True and False Dependences

- There are three kinds of dependences:

RAW: read after write
WAR: write after read
WAW: write after write

- WAR and WAW are called false dependences
- True dependences express data flow
- False dependences are an artifact of storage allocation

Removing False Dependences, SSA

False dependences can be eliminated by providing unique storage for each computation, aka Static Single Assignment (SSA)

- Unifies variables and instructions
- Instruction is the variable
- Enables graph-based program representation
- All modern compilers use it

Data Dependence Graphs

Data Dependence Graph

Scheduling Computations

Schedule 1: Schedule 2:
Storage $=3 \quad$ Storage $=4$
Latency $=5 \quad$ Latency $=3$

- Storage assignment and parallelism influence each other
- More storage
- less false dependences
- more freedom
- more parallelism
- Knowing dependences essential for the compiler to come up with "good" schedules

Scheduling Computations

Schedule 1: Schedule 2:
Storage $=3 \quad$ Storage $=4$
Latency $=5 \quad$ Latency $=3$

- Storage assignment and parallelism influence each other
- More storage
- less false dependences
- more freedom
- more parallelism
- Knowing dependences essential for the compiler to come up with "good" schedules
- Unfortunately: Finding schedule that maximizes parallelism and not exceeds storage bound is NP-hard

Memory

Definition [recap]

An instruction B is data dependent on A
if and only if

1. both access the same storage location x
2. there is a path from A to B and

- one of them is a write and
- the path contains no further write to x
- What if it is not clear what x is?
- Here: Dependence if $a=b$
- Undecidable in general
- Compiler has to be conservative:

Assume dependence exists

Dependence Analysis in Loops

$$
\begin{aligned}
& \text { for } i=1 \text { to } 4 \\
& \text { for } j=1 \text { to } 4 \\
& x[i, j] \\
& =X[i \quad, j-1] \\
& \\
& \\
& \\
& \\
& \\
& +X[i-1, j-1-1, j]
\end{aligned}
$$

- Conceptually, unroll loops and construct dependence graph
- Not practical:
- Loop bounds not constant
- Graph too big
- We can do better if loops and subscripts are affine
- Relate instances of instructions given by iteration vector
- Represent dependences by polyhedra

Dependence Polyhedra

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { for j }=1 \text { to } N \\
& \text { X[i,j] }=X[i \quad, j-1] / / S \\
& \\
& +X[i-1, j-1] \\
& \\
& +X[i-1, j]
\end{aligned}
$$

- Relate instances of instructions
- Instances described by iteration space polyhderon

Dependence polyhedron for accesses
$X[i, j]$ and $X[i, j-1]$:
$D_{S, S} \triangleq\left[\begin{array}{rrrrrr}1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ \vdots & & & & & \end{array}\right] \cdot\left[\begin{array}{c}i \\ j \\ i^{\prime} \\ j^{\prime} \\ N \\ 1\end{array}\right] \frac{\overrightarrow{0}}{\geq \overrightarrow{0}}$

Dependence Polyhedra

$$
\begin{aligned}
\text { for } i=1 & \text { to } N \\
\text { for } j=1 & \text { to } N \\
X[i, j] & =X[i \quad, j-1] / / S \\
& +X[i-1, j-1] \\
& +X[i-1, j]
\end{aligned}
$$

- Relate instances of instructions
- Instances described by iteration space polyhderon

Dependence polyhedron for accesses
$X[i, j]$ and $X[i, j-1]$:
$D_{S, S} \triangleq\left[\begin{array}{rrrrrr}1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ \vdots & & & & & \end{array}\right] \cdot\left[\begin{array}{c}i \\ j \\ i^{\prime} \\ j^{\prime} \\ N \\ 1\end{array}\right] \frac{\overrightarrow{0}}{\geq \overrightarrow{0}}$

Dependence Polyhedra

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { for } j=1 \text { to } N \\
& X[i, j]=X[i \uparrow, j-1] / / S \\
&+X[i-1, j-1] \\
&+X[i-1, j]
\end{aligned}
$$

- Relate instances of instructions
- Instances described by iteration space polyhderon

Dependence polyhedron for accesses
$X[i, j]$ and $X[i, j-1]$:
$D_{S, S} \triangleq\left[\begin{array}{rrrrrr}1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ \vdots & & & & & \end{array}\right] \cdot\left[\begin{array}{c}i \\ j \\ i^{\prime} \\ j^{\prime} \\ N \\ 1\end{array}\right] \frac{\overrightarrow{0}}{\geq \overrightarrow{0}}$

Dependence Polyhedra

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { for } j=1 \text { to } N \\
& x[i, j]=X[i \quad, j-1] / / S \\
& \\
& \\
& +X[\hat{i}-1, j-1] \\
& \\
& +X[i-1, j]
\end{aligned}
$$

- Relate instances of instructions
- Instances described by iteration space polyhderon

Dependence polyhedron for accesses
$X[i, j]$ and $X[i, j-1]$:
$D_{S, S} \triangleq\left[\begin{array}{rrrrrr}1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ \vdots & & & & & \end{array}\right] \cdot\left[\begin{array}{c}i \\ j \\ i^{\prime} \\ j^{\prime} \\ N \\ 1\end{array}\right] \frac{\overrightarrow{0}}{\geq \overrightarrow{0}}$

Dependence Polyhedra

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { for } j=1 \text { to } N \\
& \qquad \begin{aligned}
X[i, j] & =X[i \quad, j-1] / / S \\
& +X[i-1, j-1] \\
& +X[i-1, j]
\end{aligned}
\end{aligned}
$$

- Relate instances of instructions
- Instances described by iteration space polyhderon

Dependence polyhedron for accesses
$X[i, j]$ and $X[i, j-1]$:
$D_{S, S} \triangleq\left[\begin{array}{rrrrrr}1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ \hline 1 & 0 & 0 & 0 & 0 & -1 \\ -1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 \\ 0 & -1 & 0 & 0 & 1 & 0 \\ \vdots & & & & & \end{array}\right] \cdot\left[\begin{array}{c}i \\ j \\ i^{\prime} \\ j^{\prime} \\ N \\ 1\end{array}\right] \frac{\overrightarrow{0}}{\geq \overrightarrow{0}}$

Dependence Polyhedra

$$
\begin{aligned}
& \text { for } i=1 \text { to } N \\
& \text { for } j=1 \text { to } N \\
& \qquad \begin{aligned}
X[i, j] & =X[i \quad, j-1] / / S \\
& +X[i-1, j-1] \\
& +X[i-1, j]
\end{aligned}
\end{aligned}
$$

Dependence polyhedron for accesses $X[i, j]$ and $X[i, j-1]$:

$$
D_{S, S} \triangleq\left[\begin{array}{rrrrrr}
1 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 \\
\hline 1 & 0 & 0 & 0 & 0 & -1 \\
-1 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 \\
0 & -1 & 0 & 0 & 1 & 0 \\
\vdots & & & & &
\end{array}\right] \cdot\left[\begin{array}{c}
i \\
j \\
i^{\prime} \\
j^{\prime} \\
N \\
1
\end{array}\right] \frac{\overrightarrow{0}}{\geq \overrightarrow{0}}
$$

- Loop transformations (schedules) described by affine functions Θ_{S} for each statement S
- Affine schedules Θ_{S}, Θ_{T} valid iff for all $\overrightarrow{x y} \in D_{S, T}$: $\Theta_{T}(\vec{x})>\Theta_{S}(\vec{y})$
- Via Farkas' Lemma, we get an affine space of all valid schedules
- Use linear programming to find a "good" one

Affine Schedules

Original Schedule

$\Theta\binom{i}{j}=\binom{i}{j}$

Inherently sequential

Optimized Schedule

$$
\Theta\binom{i}{j}=\binom{i+j}{j}
$$

Parallelism along the j dimension

