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Dependence

if (y < 0)

x = 0; // A

else

x = 1; // B

z = x + 1; // C

Value dependence:

• Determines which variables

influence the value of a

variable

• Here: z depends on x and y

• Foundation of slicing,

non-interference, binding

time, divergence analyses

Data dependence:

• Relates instructions in the

program based on what

storage they access

• Here: C depends on A and B

• Limits freedom how compiler

can arrange code wrt a

given storage allocation
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Data Dependence

x ← 1

y ← 2

x ← x + y

y ← 3

z ← 4

y ← y + z

x ← x + y

Definition

An instruction B is data dependent on A

(write B → A) if and only if

1. both access the same storage location x

2. there is a path from A to B and

• one of them is a write and

• the path contains no further write to x

Theorem

Any schedule that preserves dependences

preserves the semantics of the program
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True and False Dependences

x ← 1

y ← 2

x ← x + y

y ← 3

z ← 4

y ← y + z

x ← x + y

• There are three kinds of dependences:

RAW: read after write

WAR: write after read

WAW: write after write

• WAR and WAW are called

false dependences

• True dependences express data flow

• False dependences are an artifact of

storage allocation
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Removing False Dependences, SSA

x1 ← 1

y1 ← 2

x2 ← x1 + y1

y2 ← 3

z1 ← 4

y3 ← y2 + z1

x3 ← x2 + y3

False dependences can be eliminated by

providing unique storage for each

computation, aka

Static Single Assignment (SSA)

• Unifies variables and instructions

• Instruction is the variable

• Enables graph-based program

representation

• All modern compilers use it
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Data Dependence Graphs

x1 ← 1

y1 ← 2

x2 ← x1 + y1

y2 ← 3

z1 ← 4

y3 ← y2 + z1

x3 ← x2 + y3

Data Dependence Graph

+x3

+y3

4z13y2

+x2

2y11x1
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Scheduling Computations

+x3

+y3

4z13y2

+x2

2y11x1

Schedule 1:

Storage = 3

Latency = 5

x1 y1 z1

x2

y2

y3

x3

Schedule 2:

Storage = 4

Latency = 3

x1 y1 y2 z1

x2 y3

x3

• Storage assignment and parallelism

influence each other

• More storage

• less false dependences

• more freedom

• more parallelism

• Knowing dependences essential for

the compiler to come up with

“good” schedules

• Unfortunately: Finding schedule

that maximizes parallelism and not

exceeds storage bound is NP-hard
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Memory

x1 ← ?

M[a] ← x1 + 1

x2 ← x1 ∗ 2

z1 ← M[b]

...

a = b?

Definition [recap]

An instruction B is data dependent on A

if and only if

1. both access the same storage location x
2. there is a path from A to B and

• one of them is a write and

• the path contains no further write to x

• What if it is not clear what x is?

• Here: Dependence if a = b

• Undecidable in general

• Compiler has to be conservative:

Assume dependence exists 8



Dependence Analysis in Loops

for i = 1 to 4

for j = 1 to 4

X[i,j] = X[i ,j-1]

+ X[i-1,j-1]

+ X[i-1,j]

i

j

• Conceptually, unroll loops and

construct dependence graph

• Not practical:

• Loop bounds not constant

• Graph too big

• We can do better if loops and

subscripts are affine

• Relate instances of instructions

given by iteration vector

• Represent dependences by

polyhedra
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Dependence Polyhedra

for i = 1 to N

for j = 1 to N

X[i,j] = X[i ,j-1] // S

+ X[i-1,j-1]

+ X[i-1,j]

Dependence polyhedron for accesses

X[i,j] and X[i,j-1]:

DS,S ,

1 0 -1 0 0 0
0 1 0 -1 0 1
1 0 0 0 0 -1
-1 0 0 0 1 0
0 1 0 0 0 -1
0 -1 0 0 1 0

...




·



i

j

i ′

j ′

N

1


= ~0

≥ ~0

• Relate instances of

instructions

• Instances described by

iteration space polyhderon
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
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

i

j

i ′

j ′

N

1


= ~0

≥ ~0

• Loop transformations

(schedules) described by

affine functions ΘS for each

statement S

• Affine schedules ΘS ,ΘT

valid iff for all −→xy ∈ DS,T :

ΘT (~x) > ΘS(~y)

• Via Farkas’ Lemma, we get

an affine space of all valid

schedules

• Use linear programming to

find a “good” one
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Affine Schedules

Original Schedule

i

j

Θ

(
i

j

)
=

(
i

j

)

Inherently sequential

Optimized Schedule

i

j

Θ

(
i

j

)
=

(
i + j

j

)

Parallelism along the j dimension

11


