
computer science

saarland
university Compiler Construction (WS 2017/18)

Exercise Sheet 3
Compiler Design Lab

Prof. Dr. Sebastian Hack
Fabian Ritter, B.Sc.

Exercise 3.1 LR(0)
Let the grammar G = (fS0; S;A;B;Cg; fa; b; c; dg; P; S0) with productions P :

S0 ! S

S ! A B j A

A ! a C c

C ! b b C j b

B ! c d

1. Construct the LR0(G) automaton with the direct construction algorithm from the lecture.

2. Mark all inadequate states in the LR0(G) automaton. For each inadequate state you have to enumerate all
the conflicts (each conflict is a pair of items) and classify them.

3. Is G an SLR(1) grammar? Justify your answer.

4. Construct LR1(G) by adding lookahead sets. To keep your write-up short, only construct the LR(1)-items
for the conflicting items in the LR(0)-inadequate states.

5. Give a successful run of the PDA P1(G) controlled by LR1(G) on the input word w = a b b b b b c c d. You
can do this by creating a table containing columns for the current stack content, the remaining input and the
next action. You do not need to formally specify P1(G). At which points of the run would there be conflicts
if it was not for the lookahead sets added and why does your selection of the lookahead sets prevent these
situations?

Exercise 3.2 LL(0) and LR(0)
Prove or disprove the following claims:

1. All LL(0) languages are also LR(0) languages.

2. All regular languages are LR(0).

3. Not all LR(0) languages are regular.

Exercise 3.3 Precedence Climbing
1. Describe the relationship between precedence climbing and LR parsing. In particular, consider:

� Which steps in the algorithm correspond to shift and reduce, respectively?

� How is the push-down automaton encoded in the algorithm?

� Where is the stack of the push-down automaton?

� How can you derive precedences from the grammar?

2. Consider the expression a || b = c in C.

� Is this expression derivable in the C grammar starting at the non-terminal expression (explain)?

� How does precedence climbing handle this?

1

Exercise 3.4 Viable Prefixes
The grammar G is given by the productions

S ! AB

A ! aAjB

B ! bBjc

Which of the following strings are viable prefixes of a right sentential form (RSF) of G? Give either the corre-
sponding rightmost derivation or tell why no such rightmost derivation exists.

� aAbB

� AbbB

Project task C Parser
Implement a parser for C4:

� For expressions (§6.5) we handle identifier, constant, string-literal, parenthesized expression, [], function
call, ., ->, sizeof, & (unary), * (unary), - (unary), !, * (binary), + (binary), - (binary), <, ==, !=, &&,
||, ?: and =. For all other expressions only the chain productions (A! B) are used.

� At declarations (§6.7) we only consider init-declarator-list with at most one init-declarator without initial-
izer. The only declaration-specifiers and specifier-qualifier-list is type-specifier. type-specifier is restricted
to void, char, int and struct-or-union-specifier. The latter is only struct without type-qualifiers and
bit fields. declarator and direct-declarator are pointer (without type-qualifier-list), identifier, parenthe-
sized declarator and function declarator with parameter-type-list. parameter-type-list is only parameter-list
without ellipses (...). All productions for parameter-declaration are considered. The productions for
abstract-declarator and direct-abstract-declarator are restricted accordingly.

� The considered statements (§6.8) are labeled-statement with an identifier, compound-statement, expression-
statement (both expression and null statements), selection-statement with if and if-else, iteration-
statement with while and every jump-statement.

� The root are external definitions (§6.9), which are handled fully except for declaration-list in function-
definition.

Remarks and hints

� For parsing your compiler will be invoked with c4 --parse test.c.

� The parser must reject all words that are not derivable from the full grammar. The parser must accept all
correct programs according to the restricted grammar.

� The grammar as given is not suitable for LL parsing in some places. For these places, adjust the grammar
accordingly and/or use precedence climbing.

� Don’t repeat yourself! Factorize common operations into helper functions.

� The grammar is ambiguous for selection-statements. How is this ambiguity resolved in the language stan-
dard? How can this be treated in the implemenation of the parser?

� How to implement the k-lookahead capability in your lexer/parser?

� It is not yet required to construct an abstract syntax tree, but will be necessary for the next parts of the project.
What classes and class hierarchy for AST nodes do you need, e.g. Expression, BinaryExpression?

� The soft deadline for this milestone is 2017-11-24.

� Keep it simple!

2

