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Subjects

◮ Structure of the compiler

◮ Automatic Compiler Generation

◮ Real Compiler Structures
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Motivation

◮ The compilation process is decomposable into a sequence of
tasks.
Aspects:

◮ Modularity
◮ Reusabilty

◮ The functionality of the tasks is well defined.

◮ Some of the tasks have generic solutions, i.e., they work for
several source languages and/or target machines.

◮ The programs that implement some of the tasks can be
automatically generated from formal specifications
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“Standard” Structure and implementing devices
source(text)

❄

lexical analysis (7) finite state machine

❄

tokenized-program

❄

syntax analysis (8) pushdown automata

❄

syntax-tree

❄
semantic-analysis (9) attribute grammar evaluators

❄

decorated syntax-tree

❄

optimizations (10) abstract interpretation + transformations
❄

intermediate rep.

❄...
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“Standard” Structure cont’d

❄

intermediate rep.

❄

code-generation(11, 12) tree automata + dynamic programming + · · ·

❄

machine-program
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A Running Example

program foo ;
var i, j : real ;
begin

read (i);
j := i + 3 ∗ i

end.
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Lexical Analysis (Scanning)

◮ Functionality

Input program text as sequence of characters
Output program text as sequence of symbols (tokens)

◮ Read input file

◮ Report errors about symbols illegal in the programming
language

◮ Screening subtask:
◮ Identify language keywords and standard identifiers
◮ Eliminate “white-space”, e.g., consecutive blanks and newlines
◮ Count line numbers
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Automatic Generation of Lexical Analyzers

◮ The symbols of programming languages can be specified by regular
expressions.

◮ Examples:

◮ program as a sequence of characters.
◮ (alpha (alpha | digit)*) for Pascal identifiers
◮ “(*“ until “*)“ for Pascal comments

◮ The recognition of input strings can be performed by a finite state
machine.

◮ A table representation or a program for the automaton is
automatically generated from a regular expression.
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Automatic Generation of Lexical Analyzers (cont’d)

regular-expression(s)

❄

FLEX

❄

scanner-programinput-program ✲ tokenized-program✲

Numerous generators for lexical analyzers: lex, flex, oolex, quex,
ml-lex.
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Syntax Analysis (Parsing)

◮ Functionality

Input Sequence of symbols (tokens)
Output Structure of the program:

◮ concrete syntax tree (parse tree),
◮ abstract syntax tree, or
◮ derivation.

◮ Treat syntax errors

Report (as many as possible) syntax errors,
Diagnose syntax errors,

Correct syntax errors.
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Parse Tree
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Automatic Generation of Syntax Analysis

◮ Parsing of programs can be performed by a pushdown automaton.

◮ A table representation or a program for the pushdown automaton is
automatically generated from a context free grammar.

context-free-grammar

❄

BISON

❄

parser-programtokenized-program ✲ abstract-syntax-tree✲

Numerous parser generators: yacc, bison, ml-yacc, java-CC,
ANTLR.
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Semantic Analysis

◮ Functionality

Input Abstract syntax tree
Output Abstract tree “decorated“ with attributes, e.g.,

types of sub-expressions

◮ Report “semantic“ errors, e.g., undeclared variables, type
mismatches

◮ Resolve usages of variables:
Identify the right defining occurrences of variables for applied
occurrences.

◮ Compute type of every (sub-)expression, resolving overloading.
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Decorated parse tree
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Machine Independent Optimizations

◮ Functionality

Input Abstract tree decorated with attributes
Output A semantically equivalent abstract tree decorated

with attributes

◮ Analyzes the program for global properties.

◮ Transforms the program based on these global properties in
order to improve efficiency.

◮ Analysis may also report program anomalies, e.g., uninitialized
variables.
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Example1: Constant Propagation

const i = 5;
var x , y : integer;
begin

x := 5 + i ;
read y ;
if x = y

then y := y + x

else y := y − x

fi;
y := y + x ∗ 9

end;



The Structure of Compilers

Example2: Loop Invariant Code Motion and Reduction in
Operator Strength

const i = 5;
var n, x , y : integer;
begin

x := 5 + i ;
y := 1;
read n;
for k := 1 to 100 do

y := y + k × (x + n)
od;
print y

end;



The Structure of Compilers

Address Assignment

◮ Map variables into the static area, stack, heap

◮ Compute static sizes

◮ Generate proper alignments
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Generation of the target program

Partly contradictory goals:

◮ Code Selection: Select cheapest instruction sequence.

◮ Register Allocation: Perform most or all of the computations
in registers.

◮ Instruction Scheduling: On machines with intraprocessor
parallelism, e.g., super-scalar, pipelined, VLIW:
exploit intraprocessor parallelism as much as possible.

◮ Partial problems are already NP-hard.

◮ “Good” solutions are obtained by combining suboptimal
solutions obtained by heuristics
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Example: Local Register Allocation

◮ Try to perform all computations in registers:

◮ One register is sufficient for the (trivial) expression x ; so
execute the command:

load ri , ρ(x)

◮ If the expression e1 takes m registers to evaluate and e2 takes
n registers and m > n, then e1 + e2 takes m registers
(why?)

◮ If the expression e1 takes m registers and e2 takes n registers
and m < n, then e1 + e2 takes n registers
(why?)

◮ What happens if m = n?

◮ What happens if there aren’t enough registers?
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Real Compiler Structure

◮ Simple compilers are “one-pass”; conceptually separated tasks
are combined.
Parser is the driver.

◮ One task in the conceptual compiler structure may need more
than one pass, e.g., mixed declarations and uses.

◮ Almost all use automatically generated lexers and parsers.

◮ Compilers use global information, e.g., symbol tables.

◮ There may be many representation levels in a multipass
compiler.


