
The Structure of Compilers

The Structure of Compilers

Mooly Sagiv
Tel Aviv University

sagiv@math.tau.ac.il

and
Reinhard Wilhelm

Universität des Saarlandes
wilhelm@cs.uni-saarland.de

14. Oktober 2013



The Structure of Compilers

Material from
Chapter 6 in Wilhelm/Maurer: Compiler Design, Pearson,
Chapter 6 in Wilhelm/Maurer: Übersetzerbau, Springer, 2nd
edition, 1997
Chapter 1 in Wilhelm/Seidl/Hack: Übersetzerbau, Vol. 2, Springer,
2012
Chapter 1 in Wilhelm/Seidl/Hack: Compiler Design — Syntactic
and Semantic Analysis —, Vol. 2, Springer, 2013



The Structure of Compilers

Subjects

◮ Structure of the compiler

◮ Automatic Compiler Generation

◮ Real Compiler Structures



The Structure of Compilers

Motivation

◮ The compilation process is decomposable into a sequence of
tasks.
Aspects:

◮ Modularity
◮ Reusabilty

◮ The functionality of the tasks is well defined.

◮ Some of the tasks have generic solutions, i.e., they work for
several source languages and/or target machines.

◮ The programs that implement some of the tasks can be
automatically generated from formal specifications



The Structure of Compilers

“Standard” Structure and implementing devices
source(text)

❄

lexical analysis (7) finite state machine

❄

tokenized-program

❄

syntax analysis (8) pushdown automata

❄

syntax-tree

❄
semantic-analysis (9) attribute grammar evaluators

❄

decorated syntax-tree

❄

optimizations (10) abstract interpretation + transformations
❄

intermediate rep.

❄...



The Structure of Compilers

“Standard” Structure cont’d

❄

intermediate rep.

❄

code-generation(11, 12) tree automata + dynamic programming + · · ·

❄

machine-program



The Structure of Compilers

A Running Example

program foo ;
var i, j : real ;
begin

read (i);
j := i + 3 ∗ i

end.



The Structure of Compilers

Lexical Analysis (Scanning)

◮ Functionality

Input program text as sequence of characters
Output program text as sequence of symbols (tokens)

◮ Read input file

◮ Report errors about symbols illegal in the programming
language

◮ Screening subtask:
◮ Identify language keywords and standard identifiers
◮ Eliminate “white-space”, e.g., consecutive blanks and newlines
◮ Count line numbers



The Structure of Compilers

Automatic Generation of Lexical Analyzers

◮ The symbols of programming languages can be specified by regular
expressions.

◮ Examples:

◮ program as a sequence of characters.
◮ (alpha (alpha | digit)*) for Pascal identifiers
◮ “(*“ until “*)“ for Pascal comments

◮ The recognition of input strings can be performed by a finite state
machine.

◮ A table representation or a program for the automaton is
automatically generated from a regular expression.



The Structure of Compilers

Automatic Generation of Lexical Analyzers (cont’d)

regular-expression(s)

❄

FLEX

❄

scanner-programinput-program ✲ tokenized-program✲

Numerous generators for lexical analyzers: lex, flex, oolex, quex,
ml-lex.



The Structure of Compilers

Syntax Analysis (Parsing)

◮ Functionality

Input Sequence of symbols (tokens)
Output Structure of the program:

◮ concrete syntax tree (parse tree),
◮ abstract syntax tree, or
◮ derivation.

◮ Treat syntax errors

Report (as many as possible) syntax errors,
Diagnose syntax errors,

Correct syntax errors.



The Structure of Compilers

Parse Tree

, : i ; ; : ;

sep

int(’’1’’)int(’’2’’)

PROGRAM

DECLIST

E

E

T

TT

FFF

STATLIST

STATLIST

STAT

ASSIGN

E

T

FTYP

DECL

IDLIST

IDLIST

intvar semcolid(2)comid(1) id(2)id(1) id(1) id(1)bec sem bec mul add

id(’’var’’) com col sem sep sembec int(’’2’’) sembecsep id(’’b’’) mul add int(’’1’’) sepid(’’a’’) id(’’a’’)id(’’a’’)id(’’a’’) id(’’b’’) id(’’int’’)

ASSIGN

STAT

a = 2 NL b = a * a + 1 NLNLv a r a b n t



The Structure of Compilers

Automatic Generation of Syntax Analysis

◮ Parsing of programs can be performed by a pushdown automaton.

◮ A table representation or a program for the pushdown automaton is
automatically generated from a context free grammar.

context-free-grammar

❄

BISON

❄

parser-programtokenized-program ✲ abstract-syntax-tree✲

Numerous parser generators: yacc, bison, ml-yacc, java-CC,
ANTLR.



The Structure of Compilers

Semantic Analysis

◮ Functionality

Input Abstract syntax tree
Output Abstract tree “decorated“ with attributes, e.g.,

types of sub-expressions

◮ Report “semantic“ errors, e.g., undeclared variables, type
mismatches

◮ Resolve usages of variables:
Identify the right defining occurrences of variables for applied
occurrences.

◮ Compute type of every (sub-)expression, resolving overloading.



The Structure of Compilers

Decorated parse tree

1

1

2

2

3

3

4 5

3

4

5

222

1

var

(id(1),(var,int))

(id(2),(var,int))

(id(1),(var,int,0))

(id(2),(var,int,0))

(var,int)

(var,int,0) (var,int,1)

(var,int) int int

addmulbecsembec id(1)id(1)id(1) id(2)id(1) com id(2) col semint

IDLIST

IDLIST

DECL

TYP F

T

E

ASSIGN

STAT

STATLIST

STATLIST

F F F

T T

T

E

E

ASSIGN

DECLIST

PROGRAM

int(’’2’’) int(’’1’’)

(C)

(D)

(E)

STAT



The Structure of Compilers

Machine Independent Optimizations

◮ Functionality

Input Abstract tree decorated with attributes
Output A semantically equivalent abstract tree decorated

with attributes

◮ Analyzes the program for global properties.

◮ Transforms the program based on these global properties in
order to improve efficiency.

◮ Analysis may also report program anomalies, e.g., uninitialized
variables.



The Structure of Compilers

Example1: Constant Propagation

const i = 5;
var x , y : integer;
begin

x := 5 + i ;
read y ;
if x = y

then y := y + x

else y := y − x

fi;
y := y + x ∗ 9

end;



The Structure of Compilers

Example2: Loop Invariant Code Motion and Reduction in
Operator Strength

const i = 5;
var n, x , y : integer;
begin

x := 5 + i ;
y := 1;
read n;
for k := 1 to 100 do

y := y + k × (x + n)
od;
print y

end;



The Structure of Compilers

Address Assignment

◮ Map variables into the static area, stack, heap

◮ Compute static sizes

◮ Generate proper alignments



The Structure of Compilers

Generation of the target program

Partly contradictory goals:

◮ Code Selection: Select cheapest instruction sequence.

◮ Register Allocation: Perform most or all of the computations
in registers.

◮ Instruction Scheduling: On machines with intraprocessor
parallelism, e.g., super-scalar, pipelined, VLIW:
exploit intraprocessor parallelism as much as possible.

◮ Partial problems are already NP-hard.

◮ “Good” solutions are obtained by combining suboptimal
solutions obtained by heuristics



The Structure of Compilers

Example: Local Register Allocation

◮ Try to perform all computations in registers:

◮ One register is sufficient for the (trivial) expression x ; so
execute the command:

load ri , ρ(x)

◮ If the expression e1 takes m registers to evaluate and e2 takes
n registers and m > n, then e1 + e2 takes m registers
(why?)

◮ If the expression e1 takes m registers and e2 takes n registers
and m < n, then e1 + e2 takes n registers
(why?)

◮ What happens if m = n?

◮ What happens if there aren’t enough registers?



The Structure of Compilers

Real Compiler Structure

◮ Simple compilers are “one-pass”; conceptually separated tasks
are combined.
Parser is the driver.

◮ One task in the conceptual compiler structure may need more
than one pass, e.g., mixed declarations and uses.

◮ Almost all use automatically generated lexers and parsers.

◮ Compilers use global information, e.g., symbol tables.

◮ There may be many representation levels in a multipass
compiler.


