Bottom-Up Syntax Analysis

Bottom-Up Syntax Analysis

— Wilhelm/Seidl/Hack: Compiler Design — Syntactic and
Semantic Analysis

Reinhard Wilhelm
Universitat des Saarlandes
wilhelm@cs.uni-saarland.de
and
Mooly Sagiv
Tel Aviv University
sagiv@math.tau.ac.il

A November 2012

Bottom-Up Syntax Analysis

Topics

Functionality and Method
Example Parsers
Derivation of a Parser
Conflicts
LR(k)-Grammars
LR(1)-Parser Generation

Bison

Dac

Bottom-Up Syntax Analysis

Bottom-Up Syntax Analysis

Input: A stream of symbols (tokens)
Output: A syntax tree or error
Method: until input consumed or error do

» shift next symbol or reduce by some production
» decide what to do by looking one symbol ahead

Properties

» Constructs the syntax tree in a bottom-up manner

» Finds the rightmost derivation (in reversed order)

» Reports error as soon as the already read part of the input is
not a prefix of a program (valid prefix property)

Bottom-Up Syntax Analysis

Parsing aabb by grammar S — aSb | ¢

Stack | Input | Action Dead ends

$ aabb# | shift reduce S — ¢

$a abb# | shift reduce S — ¢

$aa bb# reduce S — ¢ shift

$aaS | bb# shift reduce S — ¢

$aaSb | b# reduce S — aSh | shift,reduce S — ¢

$aS b# shift reduce S — ¢

$aSb | # reduce S — aSh | reduce S — ¢

$S # accept reduce S — ¢
Issues:

» Shift vs. Reduce

» Reduce by S — e or by S — aSh

Bottom-Up Syntax Analysis

Parsing aa by grammar S - AB, S - A, A—a, B— a

Stack | Input | Action Dead ends

$ aa# | shift

$a a# reduce A — a | reduce B — 3, shift
$A a#t shift reduce S — A

$Aa | # reduce B— a |reduce A — a

$AB | # reduce S — AB

$S # accept

Issues:
» Shift vs. Reduce
» Reduce by A—aorby B— b

Bottom-Up Syntax Analysis

Shift-Reduce Parsers

» The bottom—up Parser is a shift—reduce parser, each step is

a shift: consuming the next input symbol or
a reduction: reducing a suffix of the stack contents by some
production.

» the problem is to decide when to stop shifting and make a
reduction instead.

> a next right side to reduce is called a “handle”,
reducing too early: dead end,
reducing too late: burying the handle.

Bottom-Up Syntax Analysis

LR-Parsers — Deterministic Shift—-Reduce Parsers

Parser decides whether to shift or to reduce based on
» the contents of the stack and
» k symbols lookahead into the rest of the input

Property of the LR—Parser: it suffices to consider the topmost state
on the stack instead of the whole stack contents.

Bottom-Up Syntax Analysis

A Recap: The Item Pushdown Automaton

» A context-free-grammar G = (Vy, V1, P, S)
» Pc=(Vr,ITg,0,[S" — SL,{[S" = S]})
» Control 6

top-stack inp. || new top-stack comment
Y —>aecP
(1X = 5.¥7) © | X =Byl s a) |y
(X = B.av]) a (X — BaA]) “shift”
(X=B8YAHY =] | ¢ (X = B8YA)) “reduce”

Sources of nondeterminism: expansion transitions;
there may be several productions for Y.

Bottom-Up Syntax Analysis

From P¢ to LR—Parsers for G

» P¢ has non-deterministic choice of expansions,
» LL—parsers eliminate non—determinism by looking ahead at
expansions,

» LR-parsers follow all possibilities in parallel (corresponds to
the subset—construction in NFA — DFA).

Bottom-Up Syntax Analysis

From P¢ to LR—Parsers for G

» P¢ has non-deterministic choice of expansions,

» LL—parsers eliminate non—determinism by looking ahead at
expansions,

» LR-parsers follow all possibilities in parallel (corresponds to
the subset—construction in NFA — DFA).
Derivation
1. Characteristic finite automaton of Pg, a description of Pg
2. Make deterministic
3. Interpret as control of a push down automaton
4

. Check for “inedaquate” states

Bottom-Up Syntax Analysis

Characteristic Finite Automaton of Pg¢

NFA char(Pg) = (Qc, Ve, A¢, qc, Fc) — the characteristic finite
automaton of Pg :

» Q. = It — states: the items of G

» V.= V7 U Vy — input alphabet: the sets of term. and
non-term. symbols

> gc = [S' — .S] — start state

» Fc ={[X — a.] | X— a € P} — final states: the complete
items

> A, =
{((X=a.YB, Y, [X—=aY.B])| X —=aYp € P and
YeVyu VT} @]
{((X=a.YP,e,[Y—=A])|X—aYBePand Y —~e P}

Bottom-Up Syntax Analysis

ltem PDA for G,p:

P

ab

S — aSb|e
Stack Input | New Stack
[S"—.5] € [S" — .S][S — .aSh]
[S" — 5] € [S"— .S][S —]
[S — .aSb] a [S — a.5b]
[S — a.5b] € [S — a.Sb][S — .aSh]
[S — a.5b] € [S — a.5h][S —]
[S — aS.b] b [S — aSh.]
[S — a.5b][S —] € [S — aS.b]
[S — a.Sb][S — aSb] | € [S — aS.b]
[S"— .S][S — aSb.] | e [— S]
[S"— .S][S —] € [S"— S]]

Bottom-Up Syntax Analysis

The Characteristic NFA

char(Pg,,)
[5.5 —= [=5
€l |S—.aSh] —= [S — a.Sh|
[S—]

———= S — aS.}|

——= [S$ - aSh]

Bottom-Up Syntax Analysis

Characteristic NFA for Gy

£

S — .E] [S—E]
E\LE 1
€ [E—.E+T] £ [ESE+T] > [E—E+.T] = [ESE+T)
1
€
S — E = [E-.T] = [E=T]
E — E+T|T 1!) .
T = T*F| F N [T>.T«F] = [T T.xF = [TT«F = [T->TxF]
1
. €
F — (E)id ¥
[T—.F = [T—F]
€ €
| o = -
[F— (E)] F=(E] = [F=(E) [F—(£)]
id
= [Foid = [F-id]

O
)
I
i
i

Bottom-Up Syntax Analysis

Interpreting char(Pg)

State of char(Pg) is the current state of Pg, i.e. the state on top
of P¢'s stack. Adding actions to the transitions and states of
char(Pg) to describe Pg:

e—transitions: push new state of char(Pg) onto stack of Pg: new
current state.

reading transitions: reading transitions of Pg: replace current state
of P¢ by the shifted one.
final state: Actions in Pg:
» pop final state [X — «.] from the stack,
» do a transition from the new topmost state
under X,
» push the new state onto the stack.

Bottom-Up Syntax Analysis

The Handle Revisited

» The bottom up—Parser is a shift-reduce—parser, each step is
a shift: consuming the next input symbol,
making a transition under it from the current state,
pushing the new state onto the stack.

a reduction: reducing a suffix of the stack contents by some production,
making a transition under the left side non—terminal from the
new current state,
pushing the new state.

» the problem is the localization of the “handle”, the next right
side to reduce.
reducing too early: dead end,
reducing too late: burying the handle.

Bottom-Up Syntax Analysis

Handles and Viable Prefixes

Some Abbreviations:

RMD - rightmost derivation

RSF — right sentential form

s’ r:;> BXu = Bau —a RMD of cfg G.

» «is a handle of Sau.
The part of a RSF next to be reduced.

» Each prefix of S« is a viable prefix.

A prefix of a RSF stretching at most up to the end of the
handle,

i.e. reductions if possible then only at the end.

Bottom-Up Syntax Analysis

Examples in Gy

RSF (handle) |viable prefix Reason

EfF E. Et EfFS—E—E+T —E<+F
rm rm rm

Txid T, Tx, Txid |S = T+ F = T xid
rm rm

F +id F S%T*id?F*id

Txid+id [T, T, Txid |S == T+F — T «id

Bottom-Up Syntax Analysis

Valid ltems

[X — «.f] is valid for the viable prefix ~a, if there exists a
RMD §' == 7 Xw = yafw .

An item valid for a viable prefix gives one interpretation of the
parsing situation.
Some viable prefixes of Gy

Viable .
Prefix Valid ltems Reason ~y X | a B
ET [ESE+.T]|S—E—ELT e E|Ef | T
rm rm
[T — .F] S Y E4+T_—E+F | E+ Tl |F
rm rm
[F — .id] S E4+F_— E+id | E+ Fle |id
(E+([[F=(B] | S (E+F) (E+ Fl(C | B
— (E+(B)

Bottom-Up Syntax Analysis

Valid Items and Parsing Situations

Given some input string xuvw.
The RMD
;) * * * *
> T 1w S yalbw S5 e S5 yuvw o xuvw

describes the following sequence of partial derivations:

rm rm rm rm
S = yXw
rm

executed by the bottom-up parser in this order.
The valid item [X — « . (] for the viable prefix v« describes the
situation after partial derivation 2.

Bottom-Up Syntax Analysis

Theorems

char(Pg) = (Qc, Ve, Ac, qc, Fe)

Theorem
For each viable prefix there is at least one valid item.

Every parsing situation is described by at least one valid item.

Theorem

Let v € (VT U Vn)* and g € Qc.

(gc,7) I—Char ro) (g,e) iff~y is a viable prefix and q is a valid item for
7.

A viable prefix brings char(Pg) from its initial state to all its valid
Iitems.

Theorem
The language of viable prefixes of a cfg is regular.

Bottom-Up Syntax Analysis

Making char(Pg) deterministic

Apply NFA — DFA to char(Pg): Result LR-DFA(G).
Example: char(P

ng)
5.5 —=[9=5]
o[5o ash] — = S ash — =[S aSh| ——= [S aSh]
[S—] p
LR-DFA(G,p):

) Q(

Bottom-Up Syntax Analysis

Characteristic NFA for Gy

£

S — .E] [S—E]
E\LE 1
€ [E—.E+T] £ [ESE+T] > [E—E+.T] = [ESE+T)
1
€
S — E = [E-.T] = [E=T]
E — E+T|T 1!) .
T = T*F| F N [T>.T«F] = [T T.xF = [TT«F = [T->TxF]
1
. €
F — (E)id ¥
[T—.F = [T—F]
€ €
| o = -
[F— (E)] F=(E] = [F=(E) [F—(£)]
id
= [Foid = [F-id]

O
)
I
i
i

Bottom-Up Syntax Analysis

LR-DFA(Go)

Bottom-Up Syntax Analysis

The States of LR-DFA(Gp) as Sets of Items

So

S1

S

S3

Sa

=1

[S — .E],

[E - .E+T],
[E — .T],

[T — .T % F],
[T — .F],

[F — (E)],
[F — .id]}

[S — E],
[E—-E.+T]}

[E— T,
[T — T.xF]}

[T — F.]}

[F = (E)],
[E - .E+T],
[E — .T],

[T — . TxF]
[T — .F]
[F = .(E)]
[F — .id]}

S ={

Se ={

[F —id]}

[E - E+.T),
[T — .TxF],
[T — .F],
[F = (E)],
[F — .id]}
[T = Tx.F],
[F = (E)],
[F — .id]}
[F = (E)]
[E— E.+T]}
[E—E+Tl),
[T = T.xF]}

[T = T«F]}

[F = (E)]}

Bottom-Up Syntax Analysis

Theorems

char(Pg) = (Qc, Ve, Ac, e, Fe) and
LR — DFA(G) = (Q4, VN U VT, A, qa, Fa)

Theorem
Let y be a viable prefix and p(y) € Qq be the uniquely determined state,
into which LR-DFA(G) transfers out of the initial state by reading ~, i.e.,

(9d>7) Fn_ome) (P(7)€). Then

(a) p(e) =qa

(b) p(7) ={a € Qc | (9,7 ., (@:)}

(c) p(y)={i€ltc | i valid for v}

(d) Let T the (in general infinite) set of all viable prefixes of G. The

mapping p: T — Qg defines a finite partition on T.

(e) L(LR-DFA(G)) is the set of viable prefixes of G that end in a handle.

Bottom-Up Syntax Analysis

Go

v = E + F is a viable prefix of Gp.

With the state p(y) = Ss are also associated:

F, (F, ((F, (((F,...

Tx«(F, Tx((F, T=(((F,...

E+F, E+(F, E4+((F,...

Regard S¢ in LR-DFA(Gp).

It consists of all valid items for the viable prefix E-+,
i.e., the items

[E— E+.T|,[T —» .T=F][T — .F],[F — .id],[F — .(E)].
Reason:

E+ is prefix of the RSF E+ T ;

S?Eﬁ E+T ?EJrF?EJrid

4 4 4 are
Therefore [E—E+.T] [T —.F] [F — .id]
valid.

Bottom-Up Syntax Analysis

What the LR-DFA(G) describes

LR-DFA(G) interpreted as a PDA Py(G) = (I, VT, A, q0, {qr})

I, (stack alphabet): the set Q4 of states of LR-DFA(G).
qo = qq (initial state): in the stack of Py(G) initially.
gr = {[S’ — S.]} the final state of LR-DFA(G),
A CT*x (VruU{e}) x " (transition relation):
Defined as follows:

Bottom-Up Syntax Analysis

LR-DFA(G)'s Transition Relation

shift: (q,a,q9d4(q,a)) € A, if 4(q, a) defined.

Read next input symbol a and push successor state of
q under a (item [X — --- .a---] € q).

reduce: (qqi...qn,€,q04(q, X)) € A,
if [X = a.]€aqn |of=n
Remove || entries from the stack.
Push the successor of the new topmost state under X
onto the stack.

Note the difference in the stacking behavior:

» the Item PDA Pg keeps on the stack only one item for each
production under analysis,

» the PDA described by the LR-DFA(G) keeps |a| states on the
stack for a production X — «f3 represented with item
X — a.f]

Bottom-Up Syntax Analysis

Reduction in PDA Py(G)
X U
R
{[X—>a.]}

o (=) = E E A

R

Bottom-Up Syntax Analysis

Some observations and recollections

» also works for reductions of ¢,
» each state has a unique entry symbol,
» the stack contents uniquely determine a viable prefix,

» current state (topmost) is the state associated with this viable
prefix,

> current state consists of all items valid for this viable prefix.

O
)
I
i
i

Bottom-Up Syntax Analysis

Non-determinism in Py(G)

Po(G) is non-deterministic if either

Shift-reduce conflict: There are shift as well as reduce transitions
out of one state, or

Reduce—reduce conflict: There are more than one reduce
transitions from one state.

States with a shift-reduce conflict have at least one read item
[X — a.af] and at least one complete item
[Y = ~l].

States with a reduce-reduce conflict have at least two complete
items [Y — o], [Z — B.].

A state with a conflict is inadequate.

Bottom-Up Syntax Analysis

Some Inadequate States

S

LR-DFA(Gp) has three inadequate states, Sy, S» and So.

Sy: Can reduce E to S (complete item [S — E.]) or read "+"
(shift=item [E — E.+ T]);

S,: Can reduce T to E (complete item [E — T.]) or read "«"
(shift-item [T — T.x F]);

So: Can reduce E + T to E (complete item [E — E + T.]) or read "x"
(shift-item [T — T.x F]).

Bottom-Up Syntax Analysis

Direct Construction of the LR-DFA(G)

Algorithm LR-DFA:

Input: cfg G = (Vy, V1, P, S)

Output: LR—DFA(G) = (Qd, Vn U VT, 494,04, Fd)

Method: The states and the transitions of the LR-DFA(G)
are constructed using the following three functions
Start, Closure and Succ

F4 — set of states with at least one complete item

var q,q’: set of item;
Qq: set of set of item;
04: set of item x(Vy U Vr) — set of item;

Bottom-Up Syntax Analysis

function Start: set of item; return({[S" — .S]});
function Closure(s : set of item) : set of item;
(* e-Succ states of algorithm NFA — DFA x)
begin q:=s;
while exists [X — a.Yf]in gand Y — vin P
and [Y — 4] notin g do
add [Y — 4] to ¢
od;
return(q)
end ;
function Succ(s : set of item, Y : Vjy U V1) : set of item;
return({{X — aY.5] | [X = a.Y[] € s});

Bottom-Up Syntax Analysis

begin
Qq4 := {Closure(Start)}; (* start state %)
6d = (Z);

foreach gin Qg and X in VyU V7 do
let ¢’ = Closure(Succ(q, X)) in
if g’ # 0 (* X—successor exists *)
then
if ¢’ not in Qg (* new state created *)
then Qy:= QyU{q'}
fi;
dg =04 U{q X g’} (* new transition *)
fi
tel

end

Bottom-Up Syntax Analysis

LR(k)—-Grammars

G is LR(k)-Grammar iff in each RMD
S':ao?alﬁaz--- = am=v
and in each RSF «; = v8w

» the handle can be localized, and

» the production to be applied can be determined

by regarding the prefix v3 of «; and at most k symbols after the
handle, 8.

Bottom-Up Syntax Analysis

LR(k)—-Grammars

G is LR(k)-Grammar iff in each RMD
S/:aoﬁal = = am =V
and in each RSF «; = v8w

» the handle can be localized, and

» the production to be applied can be determined

by regarding the prefix v3 of a; and at most k symbols after the
handle, 3. l.e., the splitting of «; into v8w and the production
X — [, such that a;_; = vXw, is uniquely determined by v3 and
k:w.

Bottom-Up Syntax Analysis

LR(k)—-Grammars

Definition: A cfg G is an LR(k)-Grammar, iff
s’ r:tn> aXw = afiw and
s’ r:;> YYx = afly and

k:w =k :y implies
thata=~vand X =Y and x = y.

O

|
1
i

Dac

R
Bottom-Up Syntax Analysis

Example 1

Cfg G with the productions
S —- A|B

A — aAb|o0

B — aBbb|1

» L(G) ={a"0b" | n>0} U{a"1b?*" | n >0}

R
Bottom-Up Syntax Analysis

Example 1

Cfg G with the productions
S —- A|B

A — aAb|o0

B — aBbb|1

» L(G) ={a"0b" | n>0} U{a"1b?*" | n >0}
» Gpyy is not LL(k) for arbitrary k, but G, is LR(0)-grammar.
» The RSFs of GnLL (M)

» $,A B,

> a"aBbbb?", a"aAbb",
> a"a0bb", a"albbb?".

Bottom-Up Syntax Analysis

Example 1 (cont'd)

» Only a"aAbb" and a"aBbbb>" allow 2 different reductions.
v B

e
» reduce a" aAbb" to a"Ab": part of a RMD
S = a"Ab" = a"aAbb",
rm rm
» reduce a"aAbb" to a"aSbb™: not part of any RMD.

» The prefix a” of a” Ab"™ uniquely determines, whether
» A s the handle (n = 0), or
> whether aAb is the handle (n > 0).

» The RSFs a"Bb?" are treated analogously.

Bottom-Up Syntax Analysis

Example 2

Cfg Gy with

S — aAc
A — Abb | b

» L(Gy) = {ab*™t1c | n >0}

Bottom-Up Syntax Analysis

Example 2

Cfg Gy with
S — aAc
A — Abb] b

» L(Gy) = {ab*>™1c | n >0}
» G is LR(0)—-grammar.
, 8
RSF > AbD b2nc: only legal reduction is to aAb?"c,

uniquely determined by the prefix aAbb.
B
5

S~
RSF“a " b b?"c: b is the handle,
uniquely determined by the prefix ab.

Bottom-Up Syntax Analysis

Example 3

Cfg Gy with
S — aAc
A — bbA | b.

» L(Gy) = L(Gy)

e
Bottom-Up Syntax Analysis

Example 3

Cfg Gy with
S — aAc
A — bbA | b.

> L(Gp) = L(G1)
» Gy is LR(1)-grammar.
» Critical RSF ab"w.

» 1:w = b implies, handle in w;
» 1:w = cimplies, last b in b" is handle.

Dac

Bottom-Up Syntax Analysis

Example 4

Cfg G3 with S — aAc

» L(G3) = L(Gy),

A = bAb | b.

Bottom-Up Syntax Analysis

Example 4

Cfg G3 with S — aAc A — bAb | b.
> L(G3) = L(Gl),
» Gs is not LR(k)—grammar for arbitrary k.

Choose an arbitrary k.
Regard two RMDs

S == ab"Ab"c = ab"bb"c
rm rm

S == ab"1Ap"le = ab™1pb"ic where n > k
rm rm

Choose o = ab", 3 = b,y = ab" ™, w = b"c,y = b"2c.

It holds k : w = k : y = bk.
a # v implies that Gz is not an LR(k)—-grammar.

Bottom-Up Syntax Analysis

Adding Lookahead

Lookahead will be used to resolve conflicts.
> [X — O1.00, L] - LR(k)—item,
if X = ajap € Pand L C VFg.
> [X — al.az] — core of [X — 01.Q02, L],
» L — the lookahead set of [X — «j.a0,L].

» [X — aj.an, L] is valid for a viable prefix cary, if for all w € L
there is a RMD S'# % aXw — aooow with u =k : w.

The context—free items can be regarded as LR(0)-items if
[X — a1.az,{e}] is identified with [X — aj.a2].

Bottom-Up Syntax Analysis

Example from Gy

(1) [E = E+.T,{),+,#}] is a valid LR(1)~item for (E+
(2) [E — T, {+}] is not a valid LR(1)-item for

any viable prefix
Reason:
(1) 5’ 2 (E) s (E+T) :> (E + T +id) where
a=(ag=E+, ao =T, u=+4, w=+id)
(2) The string Ex can occur in no RMD.

Bottom-Up Syntax Analysis

LR—Parser

Take their decisions (to shift or to reduce) by consulting
» the viable prefix v in the stack, actually the by ~ uniquely
determined state (on top of the stack),
» the next k symbols of the remaining input.
» Recorded in an action—table.

» The entries in this table are:

shift: read next input symbol;
reduce (X — «): reduce by production X — «;
error: report error

accept: report successful termination.

A goto-table records the transition function of the LR-DFA(G).

Bottom-Up Syntax Analysis

The action— and the goto—table

action-table goto-table
VTS; Vy U Vr
u X
Q parser—action Qg 5a(g, X)

for (q; u)

Bottom-Up Syntax Analysis

Parser Table for S — aSb|e

Action—table Goto—table
state sets of items symbols
b #
[S"—.5], state symbol
0 [S — .aSh], r(S —e€) a|lb|#|S
[S—=1} 0 1 4
[S — a.Sb], 1|1 2
1 [S — .aSh], r(S —e) 2 3
S — 1} 3
2 | {[S — aS.h]} s 4
3 | {[S— aSb.]} r(S — aSb) | r(S — aSb)
4 | {[S" > S} accept

Bottom-Up Syntax Analysis

Parsing aabb

Stack Input | Action

$0 aabb+# | shift 1

$01 abb# | shift1

$011 bb# reduce S — ¢
$0112 bb+# shift 3

$01123 | b# reduce S — aSh
$012 b# shift 3

$0123 | # reduce S — aSh
$04 # accept

Bottom-Up Syntax Analysis

Compressed Representation

» Integrate the terminal columns of the goto—table into the
action—table.

» Combine shift entry for g and a with d4(q, a).
» Interpret action[q, a] = shift p as read a and push p.

Bottom-Up Syntax Analysis

Compressed Parser table for S — aSb|e

st

sets of items

symbols

goto

[S" —.5],
{ [S — .aSh],
[S— 1}

[S — a.5b],
{ [S — .aSh],

[S—= 1}
{[S — aS.b]}
{[S — aSb.]}
{[$" = S|}

|
}

b

i

sl

sl

rS — e

s3
rS — aSh

rS —e

rS — aSh
accept

Bottom-Up Syntax Analysis

Compressed Parser table for
S—AB,S—>AA—aB—a

s | sets of items symbols goto
a # B
[S"— .5],
[S — .AB],
0 [S— A, st
[A— .|
1| {[A—al]} rA—al|rA—a
[S — A.B],
2 [S— Al s3 rS—A 4
[B — .4]
31{[B—a]} B —a
4| {[S — AB.} rS — AB
51{[S"—S.]} a

Bottom-Up Syntax Analysis

Parsing aa

Stack | Input | Action

$0 aa# |shiftl

$01 | a# reduce A — a
$02 | a# shift 3

$023 | # reduce B — a
$024 | # reduce S — AB
$05 | # accept

Bottom-Up Syntax Analysis

Algorithm LR(1)-PARSER

type state = set of item;
var lookahead: symbol,
(* the next not yet consumed input symbol x)
S : stack of state;
proc scan;
(* reads the next symbol into lookahead x)
proc acc;
(* report successful parse; halt x)
proc err(message: string);
(* report error; halt)

R
Bottom-Up Syntax Analysis

scan; push(S, qq);
forever do
case action[top(S), lookahead] of
shift: begin push(S, goto[top(S), lookahead]);
scan
end ;
reduce (X—a): begin
popl®l(S); push(S, goto[top(S), X]);
output("X — ")
end ;
accept: acc;
error: err("...");
end case
od

Bottom-Up Syntax Analysis

Construction of LR(1)—-Parsers

Classes of LR—Parsers:
canonical LR(1): analyze languages of LR(1)-grammars,
SLR(1): use FOLLOW; to resolve conflicts,
size is size of LR(0)—parser,

LALR(1): refine lookahead sets compared to FOLLOW;,
size is size of LR(0)—parser.
BISON is an LALR(1)—parser generator.

Bottom-Up Syntax Analysis

LR(1)-Conflicts

Set of LR(1)-items / has a

shift-reduce-conflict:
if exists at least one item [X — «.af,L;1] €/
and at least one item [Y — ~v., L] €/,
and if a € L.

reduce-reduce-conflict:
if it contains at least two items [X — ., L]
and [Y — f., Lp] where L1 N Ly # 0.

A state with a conflict is called inadequate.

Bottom-Up Syntax Analysis

Construction of an LR(1)-Action Table

Input: set of LR(1)-states Q without inadequate states
Output: action-table
Method:
foreach g € Q do
foreach LR(1)-item [K,L] € q do
if K=[S"— S]and L= {#}
then action|q, #] := accept
elseif K =[X — o]
then foreach ac L do
action[q, a] := reduce(X — «)
od
elseif K =[X — a.af]
then action|q, a] := shift
fi
od
od;

foreach g € Q and a € V1 such that action|[q, a] is undef. do
action|q, a] := error
od;

Bottom-Up Syntax Analysis

Computing Canonical LR(1)-States

Input: cfg G

Output: char. NFA of a canonical LR(1)-Parser for G.

Method: The states and transitions are constructed
using the functions Start, Closure and Succ.

var g,q : set of item;

var @ : set of set of item;

var § : set of item x (Vy U V1) — set of item;
function Start: set of item;

return({[S' = .S, {#}]});

Bottom-Up Syntax Analysis

Computing Canonical LR(1)-States

function Closure(q : set of item) : set of item;
begin
foreach [X — a.Yp,L]ingand Y — v in P do
if exist. [Y — .4,L']ing
then replace [Y — 4, L] by [Y — v, L' Ue-ffi(5L)]
else g := qU{[Y — .y,e-fi(SL)]}
fi
od;
return(q)
end ;
function Succ(q: set of item, Y : VyU V7): set of item;
return({[X — aY.5,L] | [X = .Y, L] € q});

Bottom-Up Syntax Analysis

Computing Canonical LR(1)-States

begin
Q := {Closure(Start)}; & :=10;
foreach gin Q and X in Vy U V7 do
let ¢’ = Closure(Succ(q, X)) in
if ¢’ # 0 (* X—successor exists *)
then
if ¢’ not in Q (* new state *)
then Q :=QU{q'}
fi;
d:=6U{q = g’} (* new transition *)
fi
tel
od
end

Bottom-Up Syntax Analysis

Computing Canonical LR(1)-States

» The test “g’ not in Q" uses an equality test on LR(1)-items.
[Kl, Ll] = [K2, L2] iff Kl = K2 and Ll = L2.
» The canonical LR(1)—parser generator splits LR(0)—states.
» LALR(1)-parsers could be generated by
» using the equality’ test [K1, L1] = [K2, L2] iff K1 = Ka.
» and replacing an existing state ¢” by a state, in which equal’

items [K1, L1] € ¢’ and [K2, L] € ¢” are merged to new items
[Kl, LU L2]

Bottom-Up Syntax Analysis

Example from Gy

Sy= Closure(Start) S¢=Closure(Succ(Sy,+))
=A{[S = -E.{#]] ={lE = E+.T,{# +}],
[E — .E+ T,{#, +}], [T — .T*F,{#, +,+}],
[E = T, {# +}], [T = .F {# +.+}],
[T — . Tx*F {# + +}], [F — (E), {#, +,*}],
[T — .F,{#,+,%}], [F — .id, {#,+,%}] }

[F — .(E),{# + *}],
[F— id, {#,++}] } S{= Closure(Succ(S}, T))
={[E = E+ T..{#+}],

Si=Closure(Succ(S§, E)) [T = T.xF,{# +,%}] }

=A{[S = E.{#}],
[E—E+T,{#+}] }

S;=Closure(Succ(Sy, T))
={[E = T..{#+}],

Inadequate LR(0)-states S1,S> und Sg are adequate after adding lookahead sets.

Si shifts under "4, reduces under "#".
S} shifts under ", reduces under "#" and "+,
S§ shifts under """, reduces under "#" and "+".

Bottom-Up Syntax Analysis

Non—canonical LR—Parsers

SLR(1)- and LALR(1)-Parsers are constructed by
1. building an LR(0)—parser,
2. testing for inadequate LR(0)-states,
3. extending complete items by lookahead sets,
4. testing for inadequate LR(1)-states.

The lookahead set for item [X — «.5] in q is denoted

LA(g,[X — a.f])

The function LA : Qg x Itg — 2YTU#} is differently defined for
SLR(1) (LAs) und LALR(1) (LA,).

SLR(1)- and LALR(1)—-Parsers have the size of the LR(0)—parser,
i.e., no states are split.

Bottom-Up Syntax Analysis

Constructing SLR(1)-Parsers

» Add LAs(q,[X — «a.]) = FOLLOW;(X) to all complete items;

» Check for inadequate SLR(1)-states.

» Cfg G is SLR(1) if it has no inadequate SLR(1)-states.
Example from Gy:

Extend the complete items in the inadequate states S1, S and Sq
by FOLLOW,; as their lookahead sets.

S'={ [5— E.,{#}] conflict removed,
[E—E.+TJ} " 4" is not in {#}

Si={ [E— T.{#. +,)}], conflict removed,
[T = T.xF]} " %" isnotin {#,+,)}

S§={ [E — E+ T.,{#.+,)}], conflict removed,
[T — T.xF]} "x"is notin {#,+,)}
Go is an SLR(1)-grammar.

Bottom-Up Syntax Analysis

A Non-SLR(1)-Grammar

SI

)
S —- L=R|R
L — xR]id
R — L

Slightly abstracted form of the C—assignment.

Bottom-Up Syntax Analysis

States of the LR-DFA as sets of items

So

S1

S>

S3

Sa

=

[— .5], S5 =A{
[S— .L=R],

[S — .R], Se =A{
[L — .%R],

[L — .id],

[R—.L] }

S +S]} S ={

[S—L=R], S ={
[R— L]}

[S—R]}

[L = =.R],
[R — .L],

[L = .*R],
[L—.id] }

Sz is the only inadequate LR(0)-state.
Extend [R — L.] € So by FOLLOW;(R) = {#,=} does not remove the

D Y o R P o - TS P P R TR o TR L S | A R U Y P PR B

[L —id] }
[S—L=.R],
[R — .L],

[L — .*%R],
[L —.id] }
[L— xR] }
[R—=1L] }

[S—L=R]}

Bottom-Up Syntax Analysis

LALR(1)-Parsers
SLR(1): LAs(q,[X — a.]) =
{a€ VT U{#} | S'# == [Xay} = FOLLOW;(X)
LALR(1): LA (q,[X — a]) =
{a € VrU{#} | S'# = BXaw and §3(qq, Ba) = q}

Lookahead set LA;(g,[X — «.]) depends on the
state q.

v

Add LA;(q,[X — «.]) to all complete items;
Check for inadequate LALR(1)-states.
Cfg G is LALR(1) if it has no inadequate LALR(1)-states.

Definition is not constructive.

v

v

v

v

Construction by modifying the LR(1)-Parser Generator,
merging items with identical cores.

Bottom-Up Syntax Analysis

The Size of LR(1) Parsers

for Java and C;

The number of states of canonical and non-canonical LR(1) parsers

\ C
LALR(1)

Java
400 600
LR(1) 10000 12000

) Q(

Bottom-Up Syntax Analysis

Non-SLR-Example

S

So
! S !

S N gy EXEIT

S = R] P

LRl =[S = R. {#}]

R — .L]] . N

id S

S \LL Ss O

B i

Se \L: id -

;5?—> LL: R - S S;

LL g YR N [Ty
— .id]

S R

[S—=L=R, {#}]

Grammar is LALR(1)-grammar.

Bottom-Up Syntax Analysis

Interesting Non LR(1) Grammars

» Common “derived” prefix

A — Blab
A — Bsac
Bi — €
82 — €
» Optional non-terminals
St — OptlLab St
OptLab — id:
OPtlab — €
St — id:= Exp
» Ambiguous:

» Ambiguous arithmetic expressions
» Dangling-else

Bottom-Up Syntax Analysis

Bison Specification

Definitions: start-non-terminal+tokens+associativity
%%

Productions

%%

C-Routines

Bottom-Up Syntax Analysis

Bison Example
"

int line_number = 1 ; int error_occ = 0 ;

void yyerror(char x);

#include <stdio.h>

%}

%start exp

%left ’+’

%left %

%right UMINUS

J%token INTCONST

YA

exp: exp ’+’ exp { $$ = $1 + $3 ;3
exp >*’ exp { $$ = $1 * $3 ;}

|

| ?-? exp Yprec UMINUS { $$ = - $2 ; }
| 20 exp) { $$=9%2; }

| INTCONST

s
W
void yyerror(char *message)
{ fprintf(stderr, "%s near line J1ld. \n", message, line_number);
error_occ=1; }

R

Bottom-Up Syntax Analysis

Flex for the Example

w{

#include <math.h>
#include "calc.tab.h"
extern int line_number;
%}

Digit [0-9]

Dot

{Digit}+

\n {line_number++ ; }

[\t 1+

T

{yylval = atoi(yytext)
return(INTCONST) ; }

3

{return(*yytext); }

Q>

