Bottom-Up Syntax Analysis

– Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis

> Reinhard Wilhelm Universität des Saarlandes wilhelm@cs.uni-saarland.de and Mooly Sagiv Tel Aviv University sagiv@math.tau.ac.il

> > 4 November 2013 (ロン (アン (ヨン (ヨン (ヨン (ヨン))))

Topics

- Functionality and Method
- Example Parsers
- Derivation of a Parser
- Conflicts
- LR(k)–Grammars
- LR(1)-Parser Generation

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Bison

Bottom-Up Syntax Analysis

- Input: A stream of symbols (tokens)
- Output: A syntax tree or error
- Method: until input consumed or error do
 - shift next symbol or reduce by some production
 - decide what to do by looking one symbol ahead
- Properties
- Constructs the syntax tree in a bottom-up manner
- Finds the rightmost derivation (in reversed order)
- Reports error as soon as the already read part of the input is not a prefix of a program (valid prefix property)

Parsing *aabb* by grammar $S \rightarrow aSb \mid \epsilon$

Stack	Input	Action	Dead ends
\$	aabb#	shift	reduce $S \rightarrow \epsilon$
\$a	abb#	shift	reduce $S \rightarrow \epsilon$
\$aa	bb#	reduce $S \rightarrow \epsilon$	shift
\$aaS	bb#	shift	reduce $S \rightarrow \epsilon$
\$aaSb	b #	reduce $S \rightarrow aSb$	shift, reduce $S \rightarrow \epsilon$
\$aS	b #	shift	reduce $S \rightarrow \epsilon$
\$aSb	#	reduce $S \rightarrow aSb$	reduce $S \rightarrow \epsilon$
\$ <i>S</i>	#	accept	reduce $S \rightarrow \epsilon$

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Issues:

- Shift vs. Reduce
- Reduce by $S \rightarrow \epsilon$ or by $S \rightarrow aSb$

Parsing *aa* by grammar $S \rightarrow AB$, $S \rightarrow A$, $A \rightarrow a$, $B \rightarrow a$

Stack	Input	Action	Dead ends
\$	aa#	shift	
\$a	a#	reduce $A \rightarrow a$	reduce $B \rightarrow a$, shift
\$A	a#	shift	reduce $S \rightarrow A$
\$Aa	#	reduce $B \rightarrow a$	reduce $A \rightarrow a$
\$AB	#	reduce $S \rightarrow AB$	
\$ <i>S</i>	#	accept	

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Issues:

- Shift vs. Reduce
- Reduce by $A \rightarrow a$ or by $B \rightarrow b$

Shift-Reduce Parsers

- The bottom-up Parser is a shift-reduce parser, each step is a shift: consuming the next input symbol or a reduction: reducing a suffix of the stack contents by some production.
- the problem is to decide when to stop shifting and make a reduction instead.

・ロト ・母 ト ・ ヨ ト ・ ヨ ・ うへの

 a next right side to reduce is called a "handle", reducing too early: dead end, reducing too late: burying the handle.

LR-Parsers – Deterministic Shift–Reduce Parsers

Parser decides whether to shift or to reduce based on

- the contents of the stack and
- ► *k* symbols lookahead into the rest of the input

Property of the LR–Parser: it suffices to consider the topmost state on the stack instead of the whole stack contents.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

A Recap: The Item Pushdown Automaton

- A context-free-grammar $G = (V_N, V_T, P, S)$
- ► $P_G = (V_T, IT_G, \delta, [S' \rightarrow .S], \{[S' \rightarrow S.]\})$
- ▶ Control δ

top-stack	inp.	new top-stack	comment		
$([X ightarrow eta. Y \gamma])$	ε	$([X \to \beta. Y\gamma][Y \to .\alpha])$	$Y \rightarrow \alpha \in P$ "expand"		
$([X ightarrow \beta.a\gamma])$	а	$([X ightarrow eta a. \gamma])$	"shift"		
$([X \to \beta. Y \gamma][Y \to \alpha.])$	ε	$([X ightarrow eta Y. \gamma])$	''reduce''		

Sources of **nondeterminism**: expansion transitions; there may be several productions for Y.

From P_G to LR–Parsers for G

- ► *P_G* has non-deterministic choice of expansions,
- LL-parsers eliminate non-determinism by looking ahead at expansions,
- ► LR-parsers follow all possibilities in parallel (corresponds to the subset-construction in NFA → DFA).

Derivation

1. Characteristic finite automaton of P_G , a description of P_G

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

- 2. Make deterministic
- 3. Interpret as control of a push down automaton
- 4. Check for "inedaquate" states

From P_G to LR–Parsers for G

- ► *P_G* has non-deterministic choice of expansions,
- LL-parsers eliminate non-determinism by looking ahead at expansions,
- ► LR-parsers follow all possibilities in parallel (corresponds to the subset-construction in NFA → DFA).

Derivation

- 1. Characteristic finite automaton of P_G , a description of P_G
- 2. Make deterministic
- 3. Interpret as control of a push down automaton
- 4. Check for "inedaquate" states

Characteristic Finite Automaton of P_G

NFA $char(P_G) = (Q_c, V_c, \Delta_c, q_c, F_c)$ — the characteristic finite automaton of P_G :

- $Q_c = It_G$ states: the items of G
- V_c = V_T ∪ V_N input alphabet: the sets of term. and non-term. symbols

•
$$q_c = [S' \rightarrow .S]$$
 — start state

F_c = {[X → α.] | X → α ∈ P} — final states: the complete items

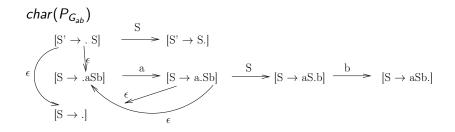
Item PDA for G_{ab} : $S \rightarrow aSb|\epsilon$

 $P_{G_{ab}}$

Stack	Input	New Stack
[S' ightarrow .S]	ϵ	[S' ightarrow .S][S ightarrow .aSb]
[S' ightarrow .S]	ϵ	[S' ightarrow .S][S ightarrow .]
[S ightarrow .aSb]	а	[S ightarrow a.Sb]
[S ightarrow a.Sb]	ϵ	[S ightarrow a.Sb][S ightarrow .aSb]
[S ightarrow a.Sb]	ϵ	$[S \rightarrow a.Sb][S \rightarrow .]$
[S ightarrow aS.b]	Ь	[S ightarrow aSb.]
$[S \rightarrow a.Sb][S \rightarrow .]$	ϵ	[S ightarrow aS.b]
$[S \rightarrow a.Sb][S \rightarrow aSb.]$	ϵ	[S ightarrow aS.b]
$[S' \rightarrow .S][S \rightarrow aSb.]$	ϵ	$[S' \rightarrow S.]$
$[S' \rightarrow .S][S \rightarrow .]$	ε	$[S' \rightarrow S.]$

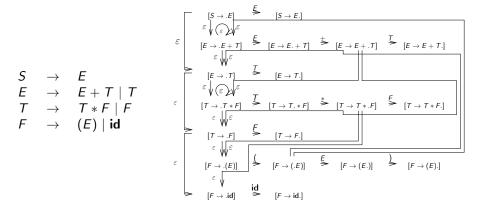
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Characteristic NFA



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ = 三 のへで

Characteristic NFA for G_0



| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆ □ ● | ● ○ ○ ○ ○

Interpreting $char(P_G)$

State of $char(P_G)$ is the *current* state of P_G , i.e. the state on top of P_G 's stack. Adding actions to the transitions and states of $char(P_G)$ to describe P_G :

 ε -transitions: push new state of $char(P_G)$ onto stack of P_G : new current state.

reading transitions: reading transitions of P_G : replace current state of P_G by the shifted one.

final state: Actions in P_G :

- ▶ pop final state $[X \rightarrow \alpha]$ from the stack,
- do a transition from the new topmost state under X,
- push the new state onto the stack.

The Handle Revisited

 The bottom up-Parser is a shift-reduce-parser, each step is

 a shift: consuming the next input symbol, making a transition under it from the current state, pushing the new state onto the stack.
 a reduction: reducing a suffix of the stack contents by some production, making a transition under the left side non-terminal from the new current state,

pushing the new state.

the problem is the localization of the "handle", the next right side to reduce.

reducing too early: dead end, reducing too late: burying the handle.

Handles and Viable Prefixes

Some Abbreviations: RMD – rightmost derivation RSF – right sentential form $S' \stackrel{*}{\Longrightarrow} \beta Xu \stackrel{}{\longrightarrow} \beta \alpha u$ – a RMD of cfg *G*.

α is a handle of βαu.
 The part of a RSF next to be reduced.

Each prefix of βα is a viable prefix. A prefix of a RSF stretching at most up to the end of the handle,

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

i.e. reductions if possible then only at the end.

Examples in G_0

RSF (<u>handle</u>)		Reason
		$S \Longrightarrow_{rm} E \Longrightarrow_{rm} E + T \Longrightarrow_{rm} E + F$
T * <u>id</u>	T, T*, T*id	$S \stackrel{3}{\Longrightarrow} T * F \underset{rm}{\Longrightarrow} T * \mathbf{id}$
<u>F</u> * id	F	$S \stackrel{4}{\Longrightarrow} T * id \stackrel{\longrightarrow}{\Longrightarrow} F * id$
$T * \mathbf{\underline{id}} + \mathbf{id}$	T, T*, T* id	$S \stackrel{3}{\Longrightarrow} T * F \underset{rm}{\Longrightarrow} T * \mathbf{id}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Valid Items

 $[X \to \alpha.\beta]$ is valid for the viable prefix $\gamma \alpha$, if there exists a RMD $S' \stackrel{*}{\Longrightarrow} \gamma X w \stackrel{\longrightarrow}{\longrightarrow} \gamma \alpha \beta w$. An item valid for a viable prefix gives one interpretation of the parsing situation.

Some viable prefixes of G_0

Viable Prefix	Valid Items	Reason	γ	w	X	α	β
E+	$[E \rightarrow E + .T]$	$S \underset{rm}{\Longrightarrow} E \underset{rm}{\Longrightarrow} E + T$	ε	ε	Е	E+	Т
	$[T \rightarrow .F]$	$S \xrightarrow{*}_{rm} E + T _{rm} E + F$	E+	ε	Т	ε	F
	[F ightarrow .id]	$S \xrightarrow{*}_{rm} E + F _{rm} E + \mathrm{id}$	E+	ε	F	ε	id
(<i>E</i> + ([F ightarrow (.E)]	$S \xrightarrow{*}_{rm} (E + F)$	(E+)	F	(E)
		$\xrightarrow[rm]{rm} (E + (E))$					

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Valid Items and Parsing Situations

Given some input string *xuvw*. The RMD $S' \stackrel{*}{\xrightarrow{rm}} \gamma Xw \xrightarrow{rm} \gamma \alpha \beta w \stackrel{*}{\xrightarrow{rm}} \gamma \alpha vw \stackrel{*}{\xrightarrow{rm}} \gamma uvw \stackrel{*}{\xrightarrow{rm}} xuvw$ describes the following sequence of partial derivations: $\gamma \stackrel{*}{\xrightarrow{rm}} x \qquad \alpha \stackrel{*}{\xrightarrow{rm}} u \qquad \beta \stackrel{*}{\xrightarrow{rm}} v \qquad X \stackrel{*}{\xrightarrow{rm}} \alpha \beta$ $S' \stackrel{*}{\xrightarrow{rm}} \gamma Xw$ executed by the bottom-up parser in this order.

The valid item $[X \rightarrow \alpha . \beta]$ for the viable prefix $\gamma \alpha$ describes the situation after partial derivation 2.

Theorems

$$char(P_G) = (Q_c, V_c, \Delta_c, q_c, F_c)$$

Theorem

For each viable prefix there is at least one valid item.

Every parsing situation is described by at least one valid item.

Theorem

Let $\gamma \in (V_T \cup V_N)^*$ and $q \in Q_c$. $(q_c, \gamma) \vdash_{char(P_G)}^* (q, \varepsilon)$ iff γ is a viable prefix and q is a valid item for γ .

A viable prefix brings $char(P_G)$ from its initial state to all its valid items.

Theorem

The language of viable prefixes of a cfg is regular.

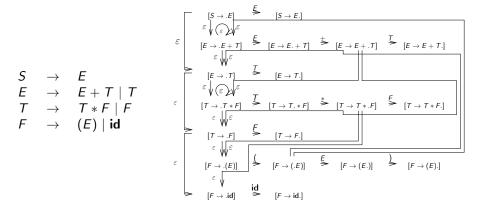
Making $char(P_G)$ deterministic

Apply NFA \rightarrow DFA to $char(P_G)$: Result LR-DFA(G). Example: $char(P_{G_{ab}})$ $[S' \rightarrow .S] \longrightarrow [S' \rightarrow S.]$ $\epsilon \qquad [S \rightarrow .aSb] \xrightarrow{a} [S \rightarrow a.Sb] \xrightarrow{S} [S \rightarrow aS.b] \xrightarrow{b} [S \rightarrow aSb.]$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○ 臣 ○ のへで

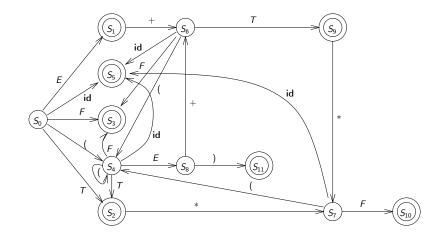
LR-DFA(G_{ab}):

Characteristic NFA for G_0



| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ◆ □ ● | ● ○ ○ ○ ○

 $LR-DFA(G_0)$



	$\{ [S \to .E], $	$A(G_0)$) as = {	Sets of Items $[F \rightarrow id.]$
	$[E \rightarrow .E + T],$ $[E \rightarrow .T],$ $[T \rightarrow .T * F],$ $[T \rightarrow .F],$	<i>S</i> ₆		$ \begin{bmatrix} E \to E + .T], \\ [T \to .T * F], \\ [T \to .F], \\ [T \to .F], \\ \end{bmatrix} $
	$[F ightarrow .(E)], \ [F ightarrow .id]\}$			$[F \rightarrow .(E)], \ [F \rightarrow .id]\}$
$S_1 = $	$\{ \begin{array}{c} [S \rightarrow E.], \\ [E \rightarrow E. + T] \} \end{array}$	<i>S</i> ₇		$[T \rightarrow T * .F],$ $[F \rightarrow .(E)],$ $[F \rightarrow .id]\}$
$S_2 = -$	$\{ egin{array}{cccc} [E ightarrow T.], \ [T ightarrow T. * F] \} \end{array}$	<i>S</i> ₈		$[F \rightarrow (E_{\cdot})], \\ [E \rightarrow E_{\cdot} + T]\}$
$S_3 = -$	$\{ [T \to F.] \}$	S ₉	= {	$[E ightarrow E + T.], \ [T ightarrow T. * F] \}$
$S_4 = $	$\{ [F \to (.E)], \\ [E \to .E + T], \end{cases}$	S ₁₀	= {	[T ightarrow T * F.]
	$\begin{bmatrix} E \to .T \end{bmatrix}, \\ \begin{bmatrix} T \to .T * F \end{bmatrix}$	<i>S</i> ₁₁	= {	$[F ightarrow (E).]\}$
	$egin{array}{llllllllllllllllllllllllllllllllllll$			< □ > < (27) > <

≡▶ ∢ ≣▶ ≡ ∽ ९ ୯

Theorems

$$char(P_G) = (Q_c, V_c, \Delta_c, q_c, F_c)$$
 and
 $LR - DFA(G) = (Q_d, V_N \cup V_T, \Delta, q_d, F_d)$

Theorem

Let γ be a viable prefix and $p(\gamma) \in Q_d$ be the uniquely determined state, into which LR-DFA(G) transfers out of the initial state by reading γ , i.e., $(q_d, \gamma) \vdash_{LR-DFA(G)}^* (p(\gamma), \varepsilon)$. Then

(a)
$$p(\varepsilon) = q_d$$

(b)
$$p(\gamma) = \{ q \in Q_c \mid (q_c, \gamma) \vdash^*_{_{char}(P_G)} (q, \varepsilon) \}$$

(c) $p(\gamma) = \{i \in It_G \mid i \text{ valid for } \gamma\}$

- (d) Let Γ the (in general infinite) set of all viable prefixes of G. The mapping $p: \Gamma \to Q_d$ defines a finite partition on Γ .
- (e) L(LR-DFA(G)) is the set of viable prefixes of G that end in a handle.

G_0

 $\gamma = \mathbf{E} + \mathbf{F}$ is a viable prefix of G_0 . With the state $p(\gamma) = S_3$ are also associated: F, (F, ((F, (((F, ... T * (F, T * ((F, T * (((F, ...E + F, E + (F, E + ((F, ..., E + (F, E + ((F, ..., E + (F, E +Regard S_6 in LR-DFA(G_0). It consists of all valid items for the viable prefix E+, i.e., the items $[E \rightarrow E + .T], [T \rightarrow .T * F], [T \rightarrow .F], [F \rightarrow .id], [F \rightarrow .(E)].$ Reason: E+ is prefix of the RSF E+T : $S \Longrightarrow_{rm} E \Longrightarrow_{rm} E + T \Longrightarrow_{rm} E + F \Longrightarrow_{rm} E + id$ Therefore $\begin{bmatrix} E \to E + . T \end{bmatrix}$ $\begin{bmatrix} T \to . F \end{bmatrix}$ $\begin{bmatrix} F \to . \mathbf{id} \end{bmatrix}$ are valid. ・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

What the LR-DFA(G) describes

LR-DFA(G) interpreted as a PDA $P_0(G) = (\Gamma, V_T, \Delta, q_0, \{q_f\})$ Γ , (stack alphabet): the set Q_d of states of LR-DFA(G). $q_0 = q_d$ (initial state): in the stack of $P_0(G)$ initially. $q_f = \{[S' \rightarrow S.]\}$ the final state of LR-DFA(G), $\Delta \subseteq \Gamma^* \times (V_T \cup \{\varepsilon\}) \times \Gamma^*$ (transition relation): Defined as follows:

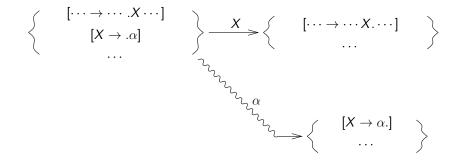
LR-DFA(G)'s Transition Relation

shift: $(q, a, q \, \delta_d(q, a)) \in \Delta$, if $\delta_d(q, a)$ defined. Read next input symbol a and push successor state of q under a (item $[X \to \cdots .a \cdots] \in q$). reduce: $(q \, q_1 \dots q_n, \varepsilon, q \, \delta_d(q, X)) \in \Delta$, if $[X \to \alpha.] \in q_n, \ |\alpha| = n$. Remove $|\alpha|$ entries from the stack. Push the successor of the new topmost state under Xonto the stack.

Note the difference in the stacking behavior:

- ► the Item PDA P_G keeps on the stack only one item for each production under analysis,
- the PDA described by the LR-DFA(G) keeps |α| states on the stack for a production X → αβ represented with item [X → α.β]

Reduction in PDA $P_0(G)$



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ = 三 のへで

Some observations and recollections

- also works for reductions of ϵ ,
- each state has a unique entry symbol,
- the stack contents uniquely determine a viable prefix,
- current state (topmost) is the state associated with this viable prefix,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

current state consists of all items valid for this viable prefix.

Non-determinism in $P_0(G)$

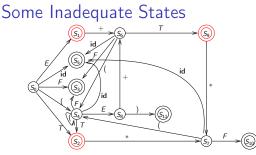
 $P_0(G)$ is non-deterministic if either Shift-reduce conflict: There are shift as well as reduce transitions out of one state, or Reduce-reduce conflict: There are more than one reduce

transitions from one state.

States with a shift-reduce conflict have at least one read item $[X \rightarrow \alpha . a \beta]$ and at least one complete item $[Y \rightarrow \gamma.]$.

States with a reduce–reduce conflict have at least two complete items $[Y \rightarrow \alpha.], [Z \rightarrow \beta.].$

A state with a conflict is **inadequate**.



LR-DFA(G_0) has three inadequate states, S_1 , S_2 and S_9 .

- S_1 : Can reduce E to S (complete item $[S \rightarrow E.]$) or read "+" (shift-item $[E \rightarrow E. + T]$);
- S_2 : Can reduce T to E (complete item $[E \rightarrow T.]$) or read "*" (shift-item $[T \rightarrow T.*F]$);
- S₉: Can reduce E + T to E (complete item $[E \rightarrow E + T.]$) or read "*" (shift-item $[T \rightarrow T. * F]$).

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

Direct Construction of the LR-DFA(G)

Algorithm LR-DFA: Input: cfg $G = (V'_N, V_T, P', S')$ Output: LR-DFA $(G) = (Q_d, V_N \cup V_T, q_d, \delta_d, F_d)$ Method: The states and the transitions of the LR-DFA(G)are constructed using the following three functions *Start, Closure* and *Succ* F_d – set of states with at least one complete item

var q, q': set of item; Q_q : set of set of item; δ_d : set of item $\times (V_N \cup V_T) \rightarrow$ set of item;

ション ふゆ くち くち くち くち

function *Start:* set of item; return({ $[S' \rightarrow .S]$ }); function *Closure*(*s* : set of item) : set of item; (* ε -Succ states of algorithm NFA \rightarrow DFA *) begin q := s; while exists $[X \to \alpha, Y\beta]$ in q and $Y \to \gamma$ in P and $[Y \rightarrow .\gamma]$ not in *q* do add $[Y \rightarrow .\gamma]$ to q od: return(q)end : function Succ(s : set of item, $Y : V_N \cup V_T$) : set of item; return({[$X \to \alpha Y.\beta$] | [$X \to \alpha.Y\beta$] $\in s$ });

```
begin
    Q_d := \{ Closure(Start) \}; (* start state *)
   \delta_{\mathcal{A}} := \emptyset:
    foreach q in Q_d and X in V_N \cup V_T do
        let q' = Closure(Succ(q, X)) in
            if q' \neq \emptyset (* X-successor exists *)
            then
               if q' not in Q_d (* new state created *)
               then Q_d := Q_d \cup \{q'\}
               fi:
               \delta_d := \delta_d \cup \{q \xrightarrow{X} q'\} \text{ (* new transition *)}
            fi
        tel
    od
end
```

うして ふゆう ふほう ふほう しょうく

LR(k)–Grammars

G is LR(k)-Grammar iff in each RMD

$$S' = \alpha_0 \xrightarrow[rm]{} \alpha_1 \xrightarrow[rm]{} \alpha_2 \cdots \xrightarrow[rm]{} \alpha_m = v$$

and in each RSF $\alpha_i = \gamma \beta w$

the handle can be localized, and

• the production to be applied can be determined by regarding the prefix $\gamma\beta$ of α_i and at most k symbols after the handle, β . I.e., the splitting of α_i into $\gamma\beta w$ and the production $X \rightarrow \beta$, such that $\alpha_{i-1} = \gamma X w$, is uniquely determined by $\gamma\beta$ and k : w.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

LR(k)–Grammars

G is LR(k)-Grammar iff in each RMD

$$S' = \alpha_0 \xrightarrow[rm]{} \alpha_1 \xrightarrow[rm]{} \alpha_2 \cdots \xrightarrow[rm]{} \alpha_m = v$$

and in each RSF $\alpha_i = \gamma \beta w$

- the handle can be localized, and
- ▶ the production to be applied can be determined by regarding the prefix $\gamma\beta$ of α_i and at most k symbols after the handle, β . I.e., the splitting of α_i into $\gamma\beta w$ and the production $X \rightarrow \beta$, such that $\alpha_{i-1} = \gamma X w$, is uniquely determined by $\gamma\beta$ and k : w.

LR(k)–Grammars

Definition: A cfg G is an LR(k)-Grammar, iff $S' \stackrel{*}{\Longrightarrow} \alpha X w \stackrel{\longrightarrow}{\longrightarrow} \alpha \beta w$ and $S' \stackrel{*}{\Longrightarrow} \gamma Y x \stackrel{\longrightarrow}{\longrightarrow} \alpha \beta y$ and k : w = k : y implies that $\alpha = \gamma$ and X = Y and x = y.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $\begin{array}{rcl} \mathsf{Cfg} & \mathsf{G}_{nLL} \text{ with the productions} \\ \mathcal{S} & \to & \mathsf{A} \mid \mathsf{B} \\ \mathcal{A} & \to & \mathsf{a} \mathsf{A} \mathsf{b} \mid \mathsf{0} \end{array}$

- $B \rightarrow aBbb \mid 1$
 - ► $L(G) = \{a^n 0 b^n \mid n \ge 0\} \cup \{a^n 1 b^{2n} \mid n \ge 0\}.$
 - G_{nLL} is not LL(k) for arbitrary k, but G_{nLL} is LR(0)-grammar.

- ▶ The RSFs of G_{nLL} (handle)
 - ► *S*, <u>*A*</u>, <u>*B*</u>,
 - ▶ aⁿ<u>aBbb</u>b²ⁿ, aⁿ<u>aAb</u>bⁿ,
 - ▶ $a^n a \underline{0} b b^n$, $a^n a \underline{1} b b b^{2n}$.

Cfg G_{nLL} with the productions $S \rightarrow A \mid B$ $A \rightarrow A \mid B$

$$B \rightarrow aBbb \mid 1$$

- ► $L(G) = \{a^n 0 b^n \mid n \ge 0\} \cup \{a^n 1 b^{2n} \mid n \ge 0\}.$
- G_{nLL} is not LL(k) for arbitrary k, but G_{nLL} is LR(0)-grammar.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- ▶ The RSFs of *G_{nLL}* (handle)
 - ► *S*, <u>*A*</u>, <u>*B*</u>,
 - ▶ aⁿ<u>aBbb</u>b²ⁿ, aⁿ<u>aAb</u>bⁿ,
 - ▶ aⁿa<u>0</u>bbⁿ, aⁿa<u>1</u>bbb²ⁿ.

Example 1 (cont'd)

▶ Only *aⁿaAbbⁿ* and *aⁿaBbbb²ⁿ* allow 2 different reductions.

• reduce
$$a^n aAb b^n$$
 to $a^n Ab^n$: part of a RMD
 $S \stackrel{*}{=} a^n Ab^n \stackrel{\cong}{=} a^n aAbb^n$,

reduce aⁿ aAbbⁿ to aⁿ aSbbⁿ: not part of any RMD.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- The prefix a^n of $a^n A b^n$ uniquely determines, whether
 - A is the handle (n = 0), or
 - whether aAb is the handle (n > 0).
- The RSFs aⁿBb²ⁿ are treated analogously.

- Cfg G_1 with $S \rightarrow aAc$ $A \rightarrow Abb \mid b$
 - $L(G_1) = \{ab^{2n+1}c \mid n \ge 0\}$
 - G_1 is LR(0)–grammar.

RSF $a Abb b^{2n}c$: only legal reduction is to $aAb^{2n}c$, uniquely determined by the prefix aAbb.

RSF a b $b^{2n}c$: *b* is the handle, uniquely determined by the prefix *ab*

Cfg G_1 with $S \rightarrow aAc$ $A \rightarrow Abb \mid b$ • $L(G_1) = \{ab^{2n+1}c \mid n \ge 0\}$ • G_1 is LR(0)–grammar. RSF $a \xrightarrow{\gamma} Abb b^{2n}c$: only legal reduction is to $aAb^{2n}c$, uniquely determined by the prefix aAbb. RSF a b $b^{2n}c$: b is the handle, uniquely determined by the prefix ab.

・ロト ・ 日 ・ モート ・ 田 ・ うへの

Cfg G_2 with $S \rightarrow aAc$ $A \rightarrow bbA \mid b.$

$\blacktriangleright L(G_2) = L(G_1)$

- G_2 is LR(1)–grammar.
- ► Critical RSF *abⁿw*.
 - 1 : w = b implies, handle in w;
 - 1 : w = c implies, last b in b^n is handle.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

- $\begin{array}{l} \mathsf{Cfg} \ \mathsf{G}_2 \ \mathsf{with} \\ \mathsf{S} \ \to \ \mathsf{aAc} \end{array}$
- $A \rightarrow bbA \mid b.$
 - $\blacktriangleright L(G_2) = L(G_1)$
 - ► G₂ is LR(1)-grammar.
 - Critical RSF abⁿw.
 - 1 : w = b implies, handle in w;
 - 1: w = c implies, last b in b^n is handle.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Cfg G_3 with $S \rightarrow aAc$ $A \rightarrow bAb \mid b$. $\blacktriangleright L(G_3) = L(G_1)$,

• G_3 is not LR(k)-grammar for arbitrary k.

Choose an arbitrary k.

Regard two RMDs

 $S \stackrel{*}{\Longrightarrow} ab^{n}Ab^{n}c \stackrel{\longrightarrow}{\Longrightarrow} ab^{n}bb^{n}c$ $S \stackrel{*}{\Longrightarrow} ab^{n+1}Ab^{n+1}c \stackrel{\longrightarrow}{\Longrightarrow} ab^{n+1}bb^{n+1}c \quad \text{where } n \ge k$ Choose $\alpha = ab^{n}, \beta = b, \gamma = ab^{n+1}, w = b^{n}c, y = b^{n+2}c$.
It holds $k : w = k : y = b^{k}$. $\alpha \neq \gamma$ implies that G_{3} is not an LR(k)-grammar.

Cfg G_3 with $S \rightarrow aAc$ $A \rightarrow bAb \mid b$. • $L(G_3) = L(G_1)$, ► G₃ is not LR(k)-grammar for arbitrary k. Choose an arbitrary k. Regard two RMDs $S \stackrel{*}{\Longrightarrow} ab^n Ab^n c \stackrel{}{\Longrightarrow} ab^n bb^n c$ $S \stackrel{*}{\underset{rm}{\Longrightarrow}} ab^{n+1}Ab^{n+1}c \stackrel{\longrightarrow}{\underset{rm}{\Longrightarrow}} ab^{n+1}bb^{n+1}c \text{ where } n \geq k$ Choose $\alpha = ab^n$, $\beta = b$, $\gamma = ab^{n+1}$, $w = b^n c$, $v = b^{n+2}c$. It holds $k : w = k : y = b^k$. $\alpha \neq \gamma$ implies that G_3 is not an LR(k)-grammar.

Adding Lookahead

Lookahead will be used to resolve conflicts.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The context-free items can be regarded as LR(0)-items if $[X \to \alpha_1.\alpha_2, \{\varepsilon\}]$ is identified with $[X \to \alpha_1.\alpha_2]$.

Example from G_0

(1)
$$[E \rightarrow E + .T, \{\}, +, \#\}]$$
 is a valid LR(1)-item for $(E+$
(2) $[E \rightarrow T., \{*\}]$ is not a valid LR(1)-item for
any viable prefix
Reason:

(1) $S' \stackrel{*}{\underset{rm}{\Longrightarrow}} (E) \stackrel{*}{\underset{rm}{\Longrightarrow}} (E+T) \stackrel{*}{\underset{rm}{\Rightarrow}} (E+T+id)$ where $\alpha = (, \ \alpha_1 = E+, \ \alpha_2 = T, \ u = +, \ w = +id)$

(2) The string E* can occur in no RMD.

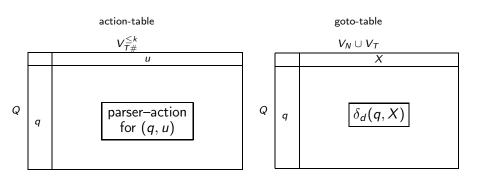
LR–Parser

Take their decisions (to shift or to reduce) by consulting

- the viable prefix γ in the stack, actually the by γ uniquely determined state (on top of the stack),
- the next k symbols of the remaining input.
- Recorded in an action-table.
- ► The entries in this table are: shift: read next input symbol; reduce $(X \rightarrow \alpha)$: reduce by production $X \rightarrow \alpha$; error: report error accept: report successful termination.

A goto-table records the transition function of the LR-DFA(G).

The action- and the goto-table



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の < @

Parser Table for $S \rightarrow aSb|\epsilon$

Action-table

Goto-table

state sets of items			symbols		
		а	b	#	
0	$\left\{\begin{array}{l} [S' \rightarrow .S],\\ [S \rightarrow .aSb],\\ [S \rightarrow .]\end{array}\right\}$	5		$r(S ightarrow \epsilon)$	
1	$\left\{\begin{array}{c} [S \rightarrow a.Sb], \\ [S \rightarrow .aSb], \\ [S \rightarrow .] \end{array}\right\}$	5	$r(S ightarrow \epsilon)$		
2	$\{[S \rightarrow aS.b]\}$		S		
2 3	$\{[S \rightarrow aSb.]\}$		r(S ightarrow aSb)	r(S ightarrow aSb)	
4	$\{[S' \rightarrow S.]\}$			accept	

state	symbol			
	а	b	#	S
0	1			4
1	1			2
2		3		
3				
4				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Parsing *aabb*

Stack	Input	Action
\$0	aabb#	shift 1
\$01	abb#	shift 1
\$011	bb#	reduce $S \rightarrow \epsilon$
\$0112	bb#	shift 3
\$01123	b #	reduce $S \rightarrow aSb$
\$012	b#	shift 3
\$0123	#	reduce $S \rightarrow aSb$
\$04	#	accept

Compressed Representation

 Integrate the terminal columns of the goto-table into the action-table.

- Combine **shift** entry for q and a with $\delta_d(q, a)$.
- Interpret action[q, a] = shift p as read a and push p.

Compressed Parser table for $S \rightarrow aSb|\epsilon$

st.	sets of items		symbols		
		а	b	#	S
0	$\left\{\begin{array}{l} [S' \rightarrow .S],\\ [S \rightarrow .aSb],\\ [S \rightarrow .]\end{array}\right\}$	<i>s</i> 1		$rS ightarrow \epsilon$	4
1	$\left\{\begin{array}{l} [S \rightarrow a.Sb], \\ [S \rightarrow .aSb], \\ [S \rightarrow .]\} \end{array}\right\}$	<i>s</i> 1	$rS ightarrow \epsilon$		2
2	$\{[S \rightarrow aS.b]\}$		<i>s</i> 3		
3	$\{[S \rightarrow aSb.]\}$		$\mathit{rS} ightarrow \mathit{aSb}$	rS o aSb	
4	$\{[S' \rightarrow S.]\}$			accept	

Compressed Parser table for $S \rightarrow AB, S \rightarrow A, A \rightarrow a, B \rightarrow a$

s	sets of items	syn	goto			
		а	#	Α	В	S
0	$\left\{\begin{array}{l} [S' \rightarrow .S],\\ [S \rightarrow .AB],\\ [S \rightarrow .A],\\ [A \rightarrow .a] \end{array}\right\}$	<i>s</i> 1		2		5
1	$\{[A \rightarrow a.]\}$	rA ightarrow a	rA ightarrow a			
2	$\left\{\begin{array}{c} [S \rightarrow A.B], \\ [S \rightarrow A.], \\ [B \rightarrow .a] \end{array}\right\}$	<i>s</i> 3	rS ightarrow A		4	
3	$\{[B \rightarrow a.]\}$		$\mathit{rB} ightarrow \mathit{a}$			
4	$\{[S \rightarrow AB.]\}$		rS ightarrow AB			
5	$\{[S' \rightarrow S.]\}$		а			

◆ロト ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○日 ● のへで

Parsing *aa*

Stack	Input	Action
\$0	aa#	shift 1
\$01	a#	reduce $A \rightarrow a$
\$02	a#	shift 3
\$023	#	reduce $B \rightarrow a$
\$024	#	reduce $S \rightarrow AB$
\$05	#	accept

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

```
Algorithm LR(1)–PARSER
```

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

```
scan; push(S, q_d);
forever do
   case action[top(S), lookahead] of
     shift: begin push(S, goto[top(S), lookahead]);
                    scan
            end :
     reduce (X \rightarrow \alpha): begin
                              pop^{|\alpha|}(S); push(S, goto[top(S), X]);
                              output("X \to \alpha")
                          end :
     accept: acc;
     error: err("...");
   end case
od
```

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

```
Construction of LR(1)-Parsers
```

```
Classes of LR-Parsers:

canonical LR(1): analyze languages of LR(1)-grammars,

SLR(1): use FOLLOW<sub>1</sub> to resolve conflicts,

size is size of LR(0)-parser,

LALR(1): refine lookahead sets compared to FOLLOW<sub>1</sub>,

size is size of LR(0)-parser.

BISON is an LALR(1)-parser generator.
```

LR(1)–Conflicts

Set of LR(1)-items *I* has a shift-reduce-conflict: if exists at least one item $[X \rightarrow \alpha.a\beta, L_1] \in I$ and at least one item $[Y \rightarrow \gamma., L_2] \in I$, and if $a \in L_2$. reduce-reduce-conflict:

> if it contains at least two items $[X \to \alpha_{.}, L_1]$ and $[Y \to \beta_{.}, L_2]$ where $L_1 \cap L_2 \neq \emptyset$.

> > ・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

A state with a conflict is called **inadequate**.

Construction of an LR(1)-Action Table

```
Input: set of LR(1)-states Q without inadequate states
Output: action-table
Method:
foreach q \in Q do
    foreach LR(1)-item [K, L] \in q do
        if K = [S' \rightarrow S.] and L = \{\#\}
        then action[q, \#] := accept
        elseif K = [X \rightarrow \alpha.]
        then foreach a \in I do
                action[q, a] := reduce(X \to \alpha)
                od
        elseif K = [X \rightarrow \alpha . a\beta]
        then action[q, a] := shift
        fi
    od
od:
```

```
for
each q \in Q and a \in V_T such that action[q, a] is undef. do
action[q, a] := error
od;
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Computing Canonical LR(1)–States

Input: cfg G
Output: char. NFA of a canonical LR(1)-Parser for G.
Method: The states and transitions are constructed using the functions Start, Closure and Succ.

```
var q, q': set of item;
var Q: set of set of item;
var \delta: set of item \times (V_N \cup V_T) \rightarrow set of item;
function Start: set of item;
return({[S' \rightarrow .S, \{\#\}]});
```

ション ふゆ くち くち くち くち

Computing Canonical LR(1)-States

```
function Closure(q : set of item) : set of item;
begin
    foreach [X \to \alpha. Y\beta, L] in q and Y \to \gamma in P do
         if exist. [Y \rightarrow .\gamma, L'] in q
         then replace [Y \to .\gamma, L'] by [Y \to .\gamma, L' \cup \varepsilon-ffi(\beta L)]
         else q := q \cup \{ [Y \to .\gamma, \varepsilon - ffi(\beta L)] \}
         fi
    od:
    return(q)
end :
function Succ(q : \text{ set of item}, Y : V_N \cup V_T): set of item;
    return({[X \to \alpha Y.\beta, L] | [X \to \alpha. Y\beta, L] \in q});
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Computing Canonical LR(1)–States

```
begin
    Q := \{ Closure(Start) \}; \quad \delta := \emptyset;
    foreach q in Q and X in V_N \cup V_T do
         let q' = Closure(Succ(q, X)) in
            if q' \neq \emptyset (* X-successor exists *)
             then
                if q' not in Q (* new state *)
                then Q := Q \cup \{q'\}
                fi:
                \delta := \delta \cup \{ a \xrightarrow{X} q' \} \text{ (* new transition *)}
             fi
         tel
    od
end
```

うして ふゆう ふほう ふほう しょうく

Computing Canonical LR(1)–States

- The test "q' not in Q" uses an equality test on LR(1)-items. $[K_1, L_1] = [K_2, L_2]$ iff $K_1 = K_2$ and $L_1 = L_2$.
- ▶ The canonical LR(1)-parser generator splits LR(0)-states.
- LALR(1)-parsers could be generated by
 - using the equality' test $[K_1, L_1] = [K_2, L_2]$ iff $K_1 = K_2$.
 - and replacing an existing state q" by a state, in which equal' items [K₁, L₁] ∈ q' and [K₂, L₂] ∈ q" are merged to new items [K₁, L₁ ∪ L₂].

ション ふゆ くち くち くち くち

Example from G_0 $S_0' = Closure(Start)$ $S'_6 = Closure(Succ(S'_1, +))$ $= \{ [S \rightarrow .E. \{ \# \}] \}$ $= \{ [E \rightarrow E + .T, \{\#, +\}], \}$ $[E \rightarrow .E + T, \{\#, +\}],$ $[T \to .T * F. \{\#, +, *\}].$ $[E \to .T, \{\#, +\}],$ $[T \to .F, \{\#, +, *\}].$ $[T \to .T * F, \{\#, +, *\}],$ $[F \rightarrow .(E), \{\#, +, *\}],$ $[T \to .F. \{\#, +, *\}].$ $[F \rightarrow .id, \{\#, +, *\}]$ $[F \to .(E), \{\#, +, *\}],$ $[F \rightarrow .id. \{\#, +, *\}]$ $S'_{0} = Closure(Succ(S'_{6}, T))$ $= \{ [E \rightarrow E + T_{..} \{ \#, + \}], \}$ $S'_1 = Closure(Succ(S'_0, E))$ $[T \rightarrow T_{*} * F_{*} \{ \#_{*} + . * \}]$ $= \{ [S \rightarrow E_{..}, \{\#\}], \}$ $[E \rightarrow E, +T, \{\#, +\}]$

$$\begin{array}{l} S_2' = & Closure(Succ(S_0', T)) \\ = \{ [E \rightarrow T_{\cdot}, \{\#, +\}], \\ & [T \rightarrow T_{\cdot} * F, \{\#, +, *\}] \end{array} \} \\ \\ \mbox{Inadequate LR(0)-states } S_1, S_2 \mbox{ und } S_9 \mbox{ are adequate after adding lookahead sets.} \end{array}$$

 S'_1 shifts under "+", reduces under "#". S'_2 shifts under "*", reduces under "#" and "+", S'_9 shifts under "*", reduces under "#" and "+".

Non-canonical LR-Parsers

SLR(1)- and LALR(1)-Parsers are constructed by

- 1. building an LR(0)-parser,
- 2. testing for inadequate LR(0)-states,
- 3. extending complete items by lookahead sets,
- 4. testing for inadequate LR(1)-states.

The lookahead set for item $[X \to \alpha.\beta]$ in q is denoted $LA(q, [X \to \alpha.\beta])$ The function $LA: Q_d \times It_G \to 2^{V_T \cup \{\#\}}$ is differently defined for $SLR(1) \ (LA_S)$ und $LALR(1) \ (LA_L)$. SLR(1)- and LALR(1)-Parsers have the size of the LR(0)-parser, i.e., no states are split.

Constructing SLR(1)-Parsers

- Add $LA_S(q, [X \rightarrow \alpha]) = FOLLOW_1(X)$ to all complete items;
- Check for inadequate SLR(1)-states.
- ▶ Cfg G is SLR(1) if it has no inadequate SLR(1)-states.

Example from G_0 :

Extend the complete items in the inadequate states S_1 , S_2 and S_9 by *FOLLOW*₁ as their lookahead sets.

$S_1''=\{$	$[S \rightarrow E., \{\#\}],$	conflict removed,
	$[E \rightarrow E. + T]$	" + " is not in $\{\#\}$

 $\begin{array}{ll} S_2'' = \{ & [E \rightarrow T., \{\#, +,)\}], & \quad \mbox{conflict removed,} \\ & [T \rightarrow T. *F] \end{array} \} & \quad \ \ " *" \mbox{ is not in } \{\#, +,)\} \end{array}$

 $\begin{aligned} S_9'' &= \{ & [E \to E + T., \{\#, +, \}\}], \text{ conflict removed,} \\ & [T \to T. * F] \} & "*" \text{ is not in } \{\#, +, \} \\ G_0 \text{ is an SLR}(1) &= \text{grammar.} \end{aligned}$

A Non–SLR(1)–Grammar

$$\begin{array}{rcccc} S' & \to & S \\ S & \to & L = R \mid R \\ L & \to & *R \mid \mathsf{id} \\ R & \to & L \end{array}$$

Slightly abstracted form of the C-assignment.

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

States of the LR–DFA as sets of items $S_0 = \{ [S' \rightarrow .S], S_5 = \{ [L \rightarrow id.] \}$ $S_1 = \{ [S' \rightarrow S_.] \} \quad S_7 = \{ [L \rightarrow *R_.] \}$ $S_2 = \{ [S \rightarrow L. = R], S_8 = \{ [R \rightarrow L.] \}$ $[R \rightarrow L.]$ } $S_9 = \{ [S \rightarrow L = R.] \}$ $S_3 = \{ [S \rightarrow R.] \}$ $S_4 = \{ [L \rightarrow *.R],$ $[R \rightarrow .L],$ $[L \rightarrow . * R],$ $[L \rightarrow .id]$

 S_2 is the only inadequate LR(0)-state.

Extend $[R \to L] \in S_2$ by $FOLLOW_1(R) = \{\#, =\}$ does not remove the shift reduce conflict gives the symplet to shift "-" is in the local head set $\mathbb{R}^{+} \to \mathbb{R}^{+}$

LALR(1)-Parsers SLR(1): $LA_{S}(q, [X \rightarrow \alpha]) =$ $\{a \in V_{T} \cup \{\#\} \mid S' \# \stackrel{*}{\Longrightarrow} \beta Xa\gamma\} = FOLLOW_{1}(X)$ LALR(1): $LA_{L}(q, [X \rightarrow \alpha]) =$ $\{a \in V_{T} \cup \{\#\} \mid S' \# \stackrel{*}{\Longrightarrow} \beta Xaw \text{ and } \delta^{*}_{d}(q_{d}, \beta\alpha) = q\}$ Lookahead set $LA_{L}(q, [X \rightarrow \alpha])$ depends on the state q.

- Add $LA_L(q, [X \rightarrow \alpha])$ to all complete items;
- Check for inadequate LALR(1)-states.
- ▶ Cfg G is LALR(1) if it has no inadequate LALR(1)-states.
- Definition is not constructive.
- Construction by modifying the LR(1)-Parser Generator, merging items with identical cores.

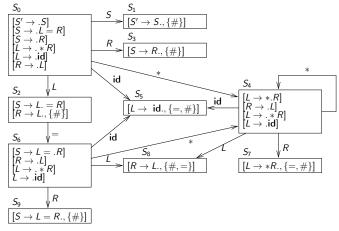
```
The Size of LR(1) Parsers
```

The number of states of canonical and non-canonical LR(1) parsers for Java and C:

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

	C	Java
LALR(1)	400	600
LR(1)	10000	12000

Non-SLR-Example



Grammar is LALR(1)–grammar.

Interesting Non LR(1) Grammars

► Common "derived" prefix $egin{array}{ccc} A &
ightarrow & B_1 ab \\ A &
ightarrow & B_2 ac \\ B_1 &
ightarrow & \epsilon \\ B_2 &
ightarrow & \epsilon \end{array}$

Optional non-terminals

 $\begin{array}{rccc} St &
ightarrow & OptLab \; St' \ OptLab \;
ightarrow \; id: \ OPtlab \;
ightarrow \; \epsilon \ St' \;
ightarrow \; id:= Exp \end{array}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Ambiguous:

- Ambiguous arithmetic expressions
- Dangling-else

Bison Specification

Definitions: start-non-terminal+tokens+associativity %% Productions %% C-Routines

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の < @

Bison Example

```
%{
int line_number = 1 ; int error_occ = 0 ;
void yyerror(char *);
#include <stdio.h>
%}
%start exp
%left '+'
%left '*'
%right UMINUS
%token INTCONST
%%
exp: exp '+' exp { \$ = \$1 + \$3 ; \}
      exp '*' exp { $$ = $1 * $3 ;}
     '-' exp %prec UMINUS { $$ = - $2 ; }
     '(' exp ')' { $$ = $2 ; }
    INTCONST
%%
void yyerror(char *message)
{ fprintf(stderr, "%s near line %ld. \n", message, line_number);
 error_occ=1; }
```

Flex for the Example

```
%{
#include <math.h>
#include "calc.tab.h"
extern int line_number;
%}
Digit [0-9]
%%
{Digit}+
                           {yylval = atoi(yytext) ;
                            return(INTCONST); }
      {line_number++ ; }
\n
[\t ]+
                            ;
                           {return(*yytext); }
•
%%
```

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@