
Lexical Analysis

Lexical Analysis

Reinhard Wilhelm
Universität des Saarlandes

wilhelm@cs.uni-saarland.de

and
Mooly Sagiv

Tel Aviv University
sagiv@math.tau.ac.il

23. Oktober 2013

Lexical Analysis

Subjects

◮ Role of lexical analysis

◮ Regular languages, regular expressions

◮ Finite state machines

◮ From regular expressions to finite state machines

◮ A language for specifying lexical analysis

◮ The generation of a scanner

◮ Flex

Lexical Analysis

“Standard” Structure
source(text)

❄

lexical analysis finite state machines

❄

tokenized-program

❄

syntax analysis pushdown automata

❄

syntax-tree

❄
semantic-analysis attribute grammar evaluators

❄

decorated syntax-tree

❄

optimizations abstract interpretation + transformations
❄

intermediate rep.

❄...

Lexical Analysis

“Standard” Structure cont’d

❄

intermediate rep.

❄

code-generation tree automata + dynamic programming + · · ·

❄

machine-program

Lexical Analysis

Lexical Analysis (Scanning)

◮ Functionality

Input: program as sequence of characters
Output: program as sequence of symbols (tokens)

◮ Produce listing

◮ Report errors, symbols illegal in the programming language

◮ Screening subtask:
◮ Identify language keywords and standard identifiers
◮ Eliminate “white-space”, e.g., consecutive blanks and newlines
◮ Count line numbers
◮ Construct table of all symbols occurring

Lexical Analysis

Automatic Generation of Lexical Analyzers

◮ The symbols of programming languages can be specified by regular
expressions.

◮ Examples:

◮ program as a sequence of characters.
◮ ((alpha | {_}) (alpha | digit | {_})*) for C

identifiers
◮ ((“/ *“ until “* /“) | (// until NL)) for C

comments

◮ The recognition of input strings can be performed by a finite state
machine.

◮ A table representation or a program for the automaton is
automatically generated from a regular expression.

Lexical Analysis

Automatic Generation of Lexical Analyzers cont’d

regular-expression(s)

❄

FLEX

❄

scanner-programinput-program ✲ tokenized-program✲

Lexical Analysis

Notations

A language, L, is a set of words, x , over an alphabet, Σ.
a1a2 . . . an, a word over Σ, ai ∈ Σ
ε The empty word
Σn The words of length n over Σ
Σ∗ The set of finite words over Σ
Σ+ The set of non-empty finite words over Σ
x .y The concatenation of x and y

Language Operations
L1 ∪ L2 Union
L1L2 = {x .y |x ∈ L1, y ∈ L2} Concatenation

L = Σ∗ − L Complement
Ln = {x1 . . . xn|xi ∈ L, 1 ≤ i ≤ n}

L∗ =
⋃

n ≥ 0
Ln Closure

L+ =
⋃

n ≥ 1
Ln

Lexical Analysis

Regular Languages

Defined inductively

◮ ∅ is a regular language over Σ

◮ {ε} is a regular language over Σ

◮ For all a ∈ Σ, {a} is a regular language over Σ

◮ If R1 and R2 are regular languages over Σ, then so are:
◮ R1 ∪ R2,
◮ R1R2, and
◮ R∗

1

Lexical Analysis

Regular Expressions and the Denoted Regular Languages
Defined inductively

◮ ∅ is a regular expression over Σ denoting ∅,

◮ ε is a regular expression over Σ denoting {ε},

◮ For all a ∈ Σ, a is a regular expression over Σ denoting {a},

◮ If r1 and r2 are regular expressions over Σ denoting R1 and R2,
resp., then so are:

◮ (r1|r2), which denotes R1 ∪ R2,
◮ (r1r2), which denotes R1R2, and
◮ (r1)

∗

, which denotes R∗

1
.

◮ Metacharacters, ∅, ε, (,), |, ∗ don’t really exist,
are replaced by their non-underlined versions.
Attention: Clash between characters in Σ and metacharacters
{(,), |, ∗}

Lexical Analysis

Example

Expression Language Example Words
a|b
ab∗a

(ab)∗

abba

Lexical Analysis

Example

Expression Language Example Words
a|b {a, b} a, b

ab∗a {a}{b}∗{a} aa, aba, abba, abbba, . . .

(ab)∗ {ab}∗ ε, ab, abab, . . .

abba {abba} abba

Lexical Analysis

Regular Expressions for (Sets of) Symbols (Tokens)

integer constants

float constants

C identifiers

strings

comments

matching-parentheses

Lexical Analysis

Automata
In the following, we will meet different types of automata.
Automata

◮ process some input, e.g. strings or trees,

◮ make transitions from configurations to configurations;

◮ configurations consist of (the rest of) the input and some
contents of some memory;

◮ the memory may be small, just one variable with finitely many
values,

◮ but the memory may also be able to grow without bound,
adding and removing values at one of its ends;

◮ the type of memory an automaton has determines its ability to
recognize a class of languages,

◮ in fact, the more powerful an automaton type is, the better it
is in rejecting input.

Lexical Analysis

Finite State Machine

The simplest type of
automaton,
its memory consists
of only one variable,
which can store one
out of finitely many
values, its states,

Input Tape

Actual State

Control

Lexical Analysis

A Non-Deterministic Finite State Machine (NFSM)
M = 〈Σ,Q,∆, q0,F 〉 where:

◮ Σ — finite alphabet

◮ Q — finite set of states

◮ q0 ∈ Q — initial state

◮ F ⊆ Q — final states

◮ ∆ ⊆ Q × (Σ ∪ {ε})× Q — transition relation

May be represented as a transition diagram

◮ Nodes — States

◮ q0 has a special “entry” mark

◮ final states doubly encircled

◮ An edge from p into q labeled by a if (p, a, q) ∈ ∆

Lexical Analysis

Example: Integer and (simplified) Float Constants
Di ∈ {0, 1, . . . , 9} . E ε

0 {1,2} ∅ ∅ ∅
1 {1} ∅ ∅ ∅
2 {2} {3} ∅ ∅
3 {4} ∅ ∅ ∅
4 {4} ∅ {5} {7}
5 {6} ∅ ∅ ∅
6 {7} ∅ ∅ ∅
7 ∅ ∅ ∅ ∅

q0 = 0

F = {1, 7}

0

Di

Di

Di

2

1

Di

Di
3 4

E

5

Di

Di

.

6

7

Di

ε

Lexical Analysis

Finte State Machines — Scanners

Finite state machines

◮ get an input word,

◮ start in their initial
state,

◮ make a series of
transitions under the
characters constituting
the input word,

◮ accept (or reject).

Scanners

◮ get an input string (a
sequence of words),

◮ start in their initial state,

◮ attempt to find the end of
the next word,

◮ when found, restart in
their initial state with the
rest of the input,

◮ terminate when the end of
the input is reached or an
error is encountered.

Lexical Analysis

Maximal Munch strategy

Find longest prefix of remaining input that is a legal symbol.

◮ first input character of the scanner — first “non-consumed”
character,

◮ in final state, and exists transition under the next character:
make transition and remember position,

◮ in final state, if there exists no transition under the next
character: Symbol found,

◮ if actual state not final and there exists no transition under the
next character: backtrack to last passed final state

◮ There is none: Illegal string
◮ Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in
quadratic runtime: Example: (a|a∗;)

Lexical Analysis

Other Example Automata

◮ integer constants

◮ float constants

◮ C identifiers

◮ strings

◮ comments

Lexical Analysis

The Language Accepted by a Finite-State Machine

◮ M = 〈Σ,Q,∆, q0,F 〉

◮ For q ∈ Q, w ∈ Σ∗, (q,w) is a configuration

◮ The binary relation step on configurations is defined by:

(q, aw) ⊢M (p,w)

if (q, a, p) ∈ ∆

◮ The reflexive transitive closure of ⊢M is denoted by ⊢∗M
◮ The language accepted by M

L(M) = {w | w ∈ Σ∗ | ∃qf ∈ F : (q0,w) ⊢∗M (qf , ε)}

Lexical Analysis

From Regular Expressions to Finite State Machines

Theorem

(i) For every regular language R , there exists an NFSM M, such
that L(M) = R .
(ii) For every regular expression r , there exists an NFSM that
accepts the regular language defined by r .

Lexical Analysis

A Constructive Proof for (ii) (Algorithm)

◮ A regular language is defined by a regular expression r

◮ Construct an “NFSM” with one final state, qf , and the transition
r

q0
qf

◮ Decompose r and develop the NFSM according to the following
rules

q

pqpq

pq1qpq

q pp

r2r1

r2

r1

ε

ε

εε

r

r1r2

r∗
q1 q2

r1|r2

until only transitions under single characters and ε remain.

Lexical Analysis

Examples

◮ a(a|0)∗ over Σ = {a, 0}

◮ C Identifiers

◮ Strings

Lexical Analysis

Nondeterminism

◮ Several transitions may be possible under the same character
in a given state

◮ ε-moves (next character is not read) may “compete” with
non-ε-moves.

◮ Deterministic simulation requires “backtracking”

Lexical Analysis

Deterministic Finite Automaton (DFSM)

◮ No ε-transitions

◮ At most one transition from every state under a given
character, i.e. for every q ∈ Q, a ∈ Σ,

|{q′ | (q, a, q′) ∈ ∆}| ≤ 1

Lexical Analysis

From Non-Deterministic to Deterministic State Machines

Theorem
For every NFSM, M = 〈Σ,Q,∆, q0,F 〉 there exists a DFSM,
M ′ = 〈Σ,Q ′, δ, q′

0
,F ′〉 such that L(M) = L(M ′).

A Scheme of a Constructive Proof (Powerset Construction)
Construct a DFSM whose states are sets of states of the NFSM.
The DFSM simulates all possible transition paths under an input
word in parallel.
Set of new states
{{q1, . . . , qn} | n ≥ 1 ∧ ∃w ∈ Σ∗ : (q0,w) ⊢∗M (qi , ε)}

q0

q1

qn

w

w

...

Lexical Analysis

The Construction Algorithm
Used in the construction: the set of ε-Successors,
ε-SS(q) = {p | (q, ε) ⊢∗M (p, ε)}

◮ Starts with q′
0
= ε-SS(q0) as the initial DFSM state.

◮ Iteratively creates more states and more transitions.

◮ For each DFSM state S ⊆ Q already constructed and
character a ∈ Σ, construct the a-successor of S

δ(S , a) =
⋃

q∈S

⋃

(q,a,p)∈∆

ε-SS(p)

if non-empty
add new state δ(S , a) if not previously constructed;
add transition from S to δ(S , a).

◮ A DFSM state S is accepting (in F ′) if there exists q ∈ S such
that q ∈ F

Lexical Analysis

Closure program

set〈state〉 closure(set〈state〉 S) {
set〈state〉 result ← ∅;
list〈state〉 W ← list_of(S);
state q, q′;
while (W 6= []) {

q ← hd(W); W ← tl(W);
if (q 6∈ result) {

result ← result ∪ {q};
forall (q′ : (q, ε, q′) ∈ ∆)

W ← q′ ::W ;
}

}
return result;

}

Lexical Analysis

Function succState()

set〈state〉 succState(set〈state〉 S , symbol x) {
set〈state〉 S ′ ← ∅;
state q, q′;
forall (q′ : q ∈ S , (q, x , q′) ∈ ∆) S ′ ← S ′ ∪ {q′};
return closure(S ′);
}

Lexical Analysis

Powerset program

list〈set〉state W ;
set〈state〉 S0 ← closure({q0});
states ← {S0}; W ← [S0]; trans ← ∅;
set〈state〉 S ,S ′;
while (W 6= []) {

S ← hd(W); W ← tl(W);
forall (x ∈ Σ) {

S ′ ← succState(S , x);
trans ← trans ∪ {(S , x ,S ′)};
if (S ′ 6∈ states) {

states ← states ∪ {S ′};
W ←W ∪ {S ′};

}
}

}

Lexical Analysis

Example: a(a|0)∗

0

εεa a

ε

q0 q1 q2 q3 qf

Lexical Analysis

DFSM minimization

DFSM need not have minimal size, i.e. minimal number of states
and transitions.
q and p are undistinguishable iff

for all words w (q,w) ⊢∗M and (p,w) ⊢∗M lead
into either F ′ or Q ′ − F ′.

Q−F’

F’either

for all w

w

p

q

or

w

After termination merge undistinguishable states.

Lexical Analysis

DFSM minimization algorithm

◮ Input a DFSM M = 〈Σ,Q, δ, q0,F 〉

◮ Iteratively refine a partition of the set of states, where each set
in the partition consists of states so far undistinguishable.

◮ Start with the partition Π = {F ,Q − F}
◮ Refine the current Π by splitting sets S ∈ Π into sets S1 and

S2 if there exist q1 ∈ S1 and q2 ∈ S2 and a ∈ Σ such that
◮ δ(q1, a) and δ(q2, a) are in two different sets of Π.

◮ Merge sets of undistinguishable states into a single state.

Lexical Analysis

Example: a(a|0)∗

{q1, q2, qf }

a

0

{q3, q2, qf }

a

0

a{q0}

Lexical Analysis

A Language for specifying lexical analyzers

(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

(ε|.(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

(ε|E (0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)))

Lexical Analysis

Descriptional Comfort

Character Classes:
Identical meaning for the DFSM (exceptions!), e.g.,
le = a - z A - Z
di = 0 - 9
Efficient implementation: Addressing the transitions
indirectly through an array indexed by the character
codes.

Symbol Classes:
Identical meaning for the parser, e.g.,
Identifiers
Comparison operators
Strings

Lexical Analysis

Descriptional Comfort cont’d

Sequences of regular definitions:

A1 = R1

A2 = R2

· · ·
An = Rn

Lexical Analysis

Sequences of Regular Definitions

Goal: Separate final states for each definition

1. Substitute right sides for left sides

2. Create an NFSM for every regular expression separately;

3. Merge all the NFSMs using ε transitions from the start state;

4. Construct a DFSM;

5. Minimize starting with partition

{F1,F2, . . . ,Fn,Q −
n⋃

i=1

Fi}

Lexical Analysis

Flex Specification

Definitions
%%
Rules
%%
C-Routines

Lexical Analysis

Flex Example

%{

extern int line_number;

extern float atof(char *);

%}

DIG [0-9]

LET [a-zA-Z]

%%

[=#<>+-*] { return(*yytext); }

({DIG}+) { yylval.intc = atoi(yytext); return(301); }

({DIG}*\.{DIG}+(E(\+|\-)?{DIG}+)?)

{yylval.realc = atof(yytext); return(302); }

\"(\\.|[^\"\\])*\" { strcpy(yylval.strc, yytext);

return(303); }

"<=" { return(304); }

:= { return(305); }

\.\. { return(306); }

Lexical Analysis

Flex Example cont’d

ARRAY { return(307); }

BOOLEAN { return(308); }

DECLARE { return(309); }

{LET}({LET}|{DIG})* { yylval.symb = look_up(yytext);

return(310); }

[\t]+ { /* White space */ }

\n { line_number++; }

. { fprintf(stderr,

"WARNING: Symbol ’%c’ is illegal, ignored!\n", *yytext);}

%%

