Syntax Analysis Recursive Equations over Grammars

 Wilhelm/Seidl/Hack: Compiler Design, Syntactic and Semantic Analysis–

> Reinhard Wilhelm Universität des Saarlandes wilhelm@cs.uni-saarland.de

> > 29. Oktober 2013

(ロ) (型) (E) (E) (E) (O) (O)

Properties of a Grammar

Sometimes need to determine properties of (constituents of) a grammar:

- whether the grammar has useless symbols,
- what can start a word for a nonterminal,
- what can follow after a nonterminal.

Properties are expressed as recursive systems of equations.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Reachability and Productivity

```
Non-terminal A is
reachable: iff there exist \varphi_1, \varphi_2 \in V_T \cup V_N such that
S \stackrel{*}{\Longrightarrow} \varphi_1 A \varphi_2
```

productive: iff there exists $w \in V_T^*$, $A \stackrel{*}{\Longrightarrow} w$

- These definitions are useless for tests; they involve quantifications over infinite sets.
- We need equivalent definitions that allow (efficient) computation.
- Eliminate non-reachable and non-productive nonterminals from the grammar,
- does not change the described language.

Two-Level Definitions

- 1. A non-terminal Y is reachable through its occurrence in $X \to \varphi_1 Y \varphi_2$ iff X is reachable,
- 2. A non-terminal is reachable iff it is reachable through at least one of its occurrences,
- 3. S' is reachable.

$$\begin{array}{ll} \operatorname{\mathit{Re}}(S') & = \operatorname{\mathit{true}} \\ \operatorname{\mathit{Re}}(X) & = \bigvee_{Y \ \rightarrow \ \varphi_1 X \varphi_2} \operatorname{\mathit{Re}}(Y) \quad \forall X \neq S' \end{array}$$

- 1. A non-terminal X is productive through production $X \to \varphi$ iff all non-terminals occurring in φ are productive.
- 2. A non-terminal is productive iff it is productive through at least one of its alternatives.

$$Pr(X) = \bigvee_{X \to \alpha} \bigwedge \{ Pr(Y) \mid Y \in V_N \text{ occurs in } \alpha \} \text{ for all } X \in V_N$$

- These definitions translate reachability and productivity for a given grammar into (recursive) systems of equations.
- ▶ System describes a function $I : [V_N \to \mathbb{B}] \to [V_N \to \mathbb{B}]$ with *false* \sqsubseteq *true*

ション ふゆ メ リン イロン シックション

- Iteration starting with smallest element,
 - $Re(S') = true, Re(X) = false, \forall X \neq S'$
 - $Pr(X) = false, \forall X \in V_N$
- Least solution wanted to eliminate as many useless non-terminals as possible.

Trees, Subtrees, Tree Fragments

X reachable: Set of upper tree fragments for X not empty, X productive: Set of subtrees for X not empty.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Recursive System of Equations

Questions: Do these recursive systems of equations have

- solutions?
- unique solutions?

They do have solutions if

- the property domain D
 - ▶ is partially ordered by some relation ⊑,
 - has a uniquely defined smallest element, \perp ,
 - ▶ has a least upper bound, $d_1 \sqcup d_2$, for each two elements d_1, d_2 and

▶ the functions occurring in the equations are monotonic.

Our domains are finite, all functions are monotonic.

Fixed Point Iteration

- ▶ Solutions are fixed points of a function $I : [V_N \to D] \to [V_N \to D].$
- Computed iteratively starting with ⊥⊥, the function which maps all non-terminals to ⊥.
- Evaluate equations until nothing changes.
- Iteration is guaranteed if D has only finitely ascending chains,

ション ふゆ メ リン イロン シックション

We always compute least fixed points.

Example: Productivity

Given the following grammar:

$$G = (\{S', S, X, Y, Z\}, \{a, b\}, \}$$

Resulting system of equations:

$$Pr(S) = Pr(X)$$

$$Pr(X) = Pr(S) \lor Pr(Y)$$

$$Pr(Y) = true \lor Pr(Z) = true$$

$$Pr(Z) = Pr(Z) \land Pr(X)$$

$$\left\{\begin{array}{ccc} S' & \to & S \\ S & \to & aX \\ X & \to & bS \mid aYbY \\ Y & \to & ba \mid aZ \\ Z & \to & aZX \end{array}\right\}, S')$$

Fixed-point iteration

S	Х	Y	Z
false	false	false	false

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Example: Reachability

Given the grammar $G = (\{S, U, V, X, Y, Z\}, \{a, b, c, d\}, \{a, b, c, d\},$ The equations: (C, V)

١

	$S \rightarrow Y$				
	$ \begin{array}{c} S \rightarrow Y \\ Y \rightarrow YZ \mid Ya \mid b \\ U \rightarrow V \\ X \rightarrow c \\ V \rightarrow Vd \mid d \\ Z \rightarrow ZX \end{array} $		Re(S)	=	true
	$U \rightarrow V$		Re(U)	=	false
ſ	X ightarrow c	\ , \)	Re(V)	=	$Re(U) \lor Re(V)$
	$V ightarrow Vd \mid d$		Re(X)	=	Re(Z)
	$Z \rightarrow ZX$		Re(Y)	=	$Re(S) \lor Re(Y)$
	· · · · · · · · · · · · · · · · · · ·		Re(Z)	=	$Re(Y) \lor Re(Z)$

Fixed-point iteration:

S	U	V	Х	Y	Z
true	false	false	false	false	false

First and Follow Sets

Parser generators need precomputed information about sets of

- prefixes of words for non-terminals (words that can begin words for non-terminals)
- followers of non-terminals (words that can follow a non-terminal).
- Use: Removing non-determinism from expand moves of the P_G

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Another Grammar for Arithmetic Expressions

Left-factored grammar G_2 , i.e. left recursion removed.

ション ふゆ メ リン イロン シックション

 G_2 defines the same language as G_0 and G_1 .

The $FIRST_1$ Sets

A production $N \to \alpha$ is applicable for symbols that "begin" α

$$T \to FT'$$

 $T' \to *T|\epsilon$

 $S \to E \\ E \to TE' \\ E' \to +E|\epsilon$

ション ふゆ メ リン イロン シックション

• Example: Arithmetic Expressions, Grammar G_2 $F \rightarrow id|(E)$

- production $F \rightarrow id$ is applied when current symbol is **id**
- production $F \rightarrow (E)$ is applied when current symbol is (
- production $T \rightarrow F$ is applied when current symbol is **id** or (
- Formal definition:

$$FIRST_1(\alpha) = \{1 : w \mid \alpha \Longrightarrow w, w \in V_T^*\}$$

The $FOLLOW_1$ Sets

A production $N \to \epsilon$ is applicable for symbols that "can follow" N in some derivation

 $E \rightarrow TE'$ $E' \rightarrow +E|\epsilon$ $T \rightarrow FT'$ $T' \rightarrow *T|\epsilon$

 $S \rightarrow F$

ション ふゆ メ リン イロン シックション

- Example: Arithmetic Expressions, Grammar G_2 $F \rightarrow id|(E)$
 - The production $E' \rightarrow \epsilon$ is applied for symbols # and)
 - The production $T' \rightarrow \epsilon$ is applied for symbols #,) and +
- Formal definition:

$$FOLLOW_1(N) = \{ a \in V_T | \exists \alpha, \gamma : S \Longrightarrow \alpha Na\gamma \}$$

Definitions

Let
$$k \ge 1$$

 k -prefix of a word $w = a_1 \dots a_n$
 $k : w = \begin{cases} a_1 \dots a_n & \text{if } n \le k \\ a_1 \dots a_k & \text{otherwise} \end{cases}$
 k -concatenation
 $\bigoplus_k : V^* \times V^* \to V^{\le k}$, defined by $u \bigoplus_k v = k : uv$
extended to languages
 $k : L = \{k : w \mid w \in L\}$
 $L_1 \bigoplus_k L_2 = \{x \bigoplus_k y \mid x \in L_1, y \in L_2\}.$
 $V^{\le k} = \bigcup_{i=1}^k V^i$ set of words of length at most $k \dots$
 $V_{T\#}^{\le k} = V_T^{\le k} \cup V_T^{k-1}\{\#\} \dots$ possibly terminated by $\#$.

Properties

Let
$$k \geq 1$$
, and $L_1, L_2, L_3 \subseteq V^{\leq k}$.

(a)
$$L_1 \oplus_k (L_2 \oplus_k L_3) = (L_1 \oplus_k L_2) \oplus_k L_3$$

(b) $L_1 \oplus_k \{\varepsilon\} = \{\varepsilon\} \oplus_k L_1 = k : L_1$
(c) $L_1 \oplus_k L_2 = \emptyset$ iff $L_1 = \emptyset \lor L_2 = \emptyset$
(d) $\varepsilon \in L_1 \oplus_k L_2$ iff $\varepsilon \in L_1 \land \varepsilon \in L_2$
(e) $k : (L_1 L_2) = k : L_1 \oplus_k k : L_2$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 の�?

$FIRST_k$ and $FOLLOW_k$

$$FIRST_{k} : (V_{N} \cup V_{T})^{*} \to 2^{V_{T}^{\leq k}} \text{ where}$$
$$FIRST_{k}(\alpha) = \{k : u \mid \alpha \Longrightarrow^{*} u\}$$

set of *k*-prefixes of terminal words for α $FOLLOW_k : V_N \rightarrow 2^{V_{T\#}^{\leq k}}$ where $FOLLOW_k(X) = \{w \mid S \stackrel{*}{\Longrightarrow} \beta X \gamma \text{ and } w \in FIRST_k(\gamma)\}$ set of *k*-prefixes of terminal words that may immediately follow *X*

ション ふゆ メ リン イロン シックション

FIRST_k

Theorem $FIRST_k(Z_1, Z_2, ..., Z_n) =$ $FIRST_k(Z_1) \oplus_k FIRST_k(Z_2) \oplus_k ... \oplus_k FIRST_k(Z_n)$

 $\frac{\text{The recursive system of equations for } FIRST_k}{FIRST_k(X) = \bigcup_{\substack{\{X \to \alpha\} \\ FIRST_k(a) = \{a\} \quad \forall a \in V_T}} FIRST_k(\alpha) \quad \forall X \in V_N$ (Fi_k)

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

FIRST₁ Example

Grammar G_2 below defines the same language as G_0 and G_1 .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The equations $FIRST_1$ for grammar G_2 :

Grammar G_2 below defines the same language as G_0 and G_1

The equations $FIRST_1$ for grammar G_2 :

(ロ) (型) (E) (E) (E) (O) (O)

Iteration

Iterative computation of the $FIRST_1$ sets:

S	Ε	E'	T	<i>T'</i>	F	
Ø	Ø	Ø	Ø	Ø	Ø	

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

*FOLLOW*_k

The system of equations for $FOLLOW_k$ is $FOLLOW_k(X) = \bigcup_{\substack{\{Y \to \varphi_1 X \varphi_2\}}} FIRST_k(\varphi_2) \oplus_k FOLLOW_k(Y) \ \forall X \in V_N - \frac{FOLLOW_k(S) = \{\#\}}{(Fo_k)}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

FOLLOW_k Example

Regard grammar G_2 . The system of equations is:

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Iterative computation of the FOLLOW₁ sets:

S	E	E'	T	<i>T'</i>	F
{#}	Ø	Ø	Ø	Ø	Ø