
Syntax Analysis

Syntax Analysis

Recursive Equations over Grammars

– Wilhelm/Seidl/Hack: Compiler Design, Syntactic and
Semantic Analysis–

Reinhard Wilhelm
Universität des Saarlandes

wilhelm@cs.uni-saarland.de

29. Oktober 2013

Syntax Analysis

Properties of a Grammar

Sometimes need to determine properties of (constituents of) a
grammar:

◮ whether the grammar has useless symbols,

◮ what can start a word for a nonterminal,

◮ what can follow after a nonterminal.

Properties are expressed as recursive systems of equations.

Syntax Analysis

Reachability and Productivity

Non-terminal A is

reachable: iff there exist ϕ1, ϕ2 ∈ VT ∪ VN such that
S

∗
=⇒ ϕ1Aϕ2

productive: iff there exists w ∈ V ∗
T

, A
∗

=⇒ w

◮ These definitions are useless for tests; they involve
quantifications over infinite sets.

◮ We need equivalent definitions that allow (efficient)
computation.

◮ Eliminate non-reachable and non-productive nonterminals from
the grammar,

◮ does not change the described language.

Syntax Analysis

Two-Level Definitions

1. A non-terminal Y is reachable through its occurrence in
X → ϕ1Yϕ2 iff X is reachable,

2. A non-terminal is reachable iff it is reachable through at least
one of its occurrences,

3. S ′ is reachable.

Re(S ′) = true

Re(X) =
∨

Y → ϕ1Xϕ2
Re(Y) ∀X 6= S ′

1. A non-terminal X is productive through production X → ϕ iff
all non-terminals occurring in ϕ are productive.

2. A non-terminal is productive iff it is productive through at
least one of its alternatives.

Pr(X) =
∨

X → α

∧

{Pr(Y) | Y ∈ VN occurs in α} for all X ∈ VN

Syntax Analysis

◮ These definitions translate reachability and productivity for a
given grammar into (recursive) systems of equations.

◮ System describes a function I : [VN → B] → [VN → B] with
false ⊑ true

◮ Iteration starting with smallest element,
◮ Re(S ′) = true, Re(X) = false, ∀X 6= S ′

◮ Pr(X) = false, ∀X ∈ VN

◮ Least solution wanted to eliminate as many useless
non-terminals as possible.

Syntax Analysis

Trees, Subtrees, Tree Fragments

X

Subtree upper treefragmentParse tree

X

for X for X

X

SS

X reachable: Set of upper tree fragments for X not empty,

X productive: Set of subtrees for X not empty.

Syntax Analysis

Recursive System of Equations

Questions: Do these recursive systems of equations have

◮ solutions?

◮ unique solutions?

They do have solutions if

◮ the property domain D
◮ is partially ordered by some relation ⊑,
◮ has a uniquely defined smallest element, ⊥,
◮ has a least upper bound, d1 ⊔ d2, for each two elements d1, d2

and

◮ the functions occurring in the equations are monotonic.

Our domains are finite, all functions are monotonic.

Syntax Analysis

Fixed Point Iteration

◮ Solutions are fixed points of a function
I : [VN → D] → [VN → D].

◮ Computed iteratively starting with ⊥⊥, the function which
maps all non-terminals to ⊥.

◮ Evaluate equations until nothing changes.

◮ Iteration is guaranteed if D has only finitely ascending chains,

We always compute least fixed points.

Syntax Analysis

Example: Productivity

Given the following grammar:

G = ({S ′, S ,X ,Y ,Z}, {a, b},

S ′ → S

S → aX

X → bS | aYbY
Y → ba | aZ
Z → aZX

, S ′)

Resulting system of equations:

Pr(S) = Pr(X)
Pr(X) = Pr(S) ∨ Pr(Y)
Pr(Y) = true ∨ Pr(Z) = true

Pr(Z) = Pr(Z) ∧ Pr(X)

Fixed-point iteration
S X Y Z

false false false false

Syntax Analysis

Example: Reachability

Given the grammar G = ({S ,U,V ,X ,Y ,Z}, {a, b, c , d},

S → Y

Y → YZ | Ya | b
U → V

X → c

V → Vd | d
Z → ZX

, S)

The equations:

Re(S) = true

Re(U) = false

Re(V) = Re(U) ∨ Re(V)
Re(X) = Re(Z)
Re(Y) = Re(S) ∨ Re(Y)
Re(Z) = Re(Y) ∨ Re(Z)

Fixed-point iteration:
S U V X Y Z

true false false false false false

Syntax Analysis

First and Follow Sets

Parser generators need precomputed information about sets of

◮ prefixes of words for non-terminals (words that can begin
words for non-terminals)

◮ followers of non-terminals (words that can follow a
non-terminal).

Use: Removing non-determinism from expand moves of the PG

Syntax Analysis

Another Grammar for Arithmetic Expressions

Left-factored grammar G2, i.e. left recursion removed.

S → E

E → TE ′ E generates T with a continuation E ′

E ′ → +E |ǫ E ′ generates possibly empty sequence of +T s
T → FT ′ T generates F with a continuation T ′

T ′ → ∗T |ǫ T ′ generates possibly empty sequence of ∗F s
F → id|(E)

G2 defines the same language as G0 and G1.

Syntax Analysis

The FIRST1 Sets

A production N → α is applicable for symbols
that “begin” α

S → E

E → TE ′

E ′ → +E |ǫ
T → FT ′

T ′ → ∗T |ǫ
F → id|(E)◮ Example: Arithmetic Expressions, Grammar G2

◮ production F → id is applied when current symbol is id
◮ production F → (E) is applied when current symbol is (
◮ production T → F is applied when current symbol is id or (

◮ Formal definition:

FIRST1(α) = {1 : w | α
∗

=⇒ w ,w ∈ V ∗
T}

Syntax Analysis

The FOLLOW1 Sets

A production N → ǫ is applicable for symbols
that “can follow” N in some derivation

S → E

E → TE ′

E ′ → +E |ǫ
T → FT ′

T ′ → ∗T |ǫ
F → id|(E)◮ Example: Arithmetic Expressions, Grammar G2

◮ The production E ′ → ǫ is applied for symbols # and)
◮ The production T ′ → ǫ is applied for symbols #,) and +

◮ Formal definition:

FOLLOW1(N) = {a ∈ VT |∃α, γ : S
∗

=⇒ αNaγ}

Syntax Analysis

Definitions

Let k ≥ 1
k-prefix of a word w = a1 . . . an

k : w =

{

a1 . . . an if n ≤ k

a1 . . . ak otherwise
k-concatenation

⊕k : V ∗ × V ∗ → V≤k , defined by u⊕kv = k : uv
extended to languages
k : L = {k : w | w ∈ L}
L1⊕kL2 = {x⊕ky | x ∈ L1, y ∈ L2}.

V≤k =
⋃

k

i=1
V i set of words of length at most k . . .

V
≤k

T# = V
≤k

T
∪ V k−1

T
{#} . . . possibly terminated by #.

Syntax Analysis

Properties

Let k ≥ 1, and L1, L2, L3 ⊆ V≤k .

(a) L1⊕k(L2⊕kL3) = (L1⊕kL2)⊕kL3

(b) L1⊕k{ε} = {ε}⊕kL1 = k : L1

(c) L1⊕kL2 = ∅ iff L1 = ∅ ∨ L2 = ∅
(d) ε ∈ L1⊕kL2 iff ε ∈ L1 ∧ ε ∈ L2

(e) k : (L1L2) = k : L1⊕kk : L2

Syntax Analysis

FIRSTk and FOLLOWk

FIRSTk : (VN ∪ VT)
∗ → 2V

≤k

T where

FIRSTk(α) = {k : u | α
∗

=⇒ u}

set of k–prefixes of terminal words for α

X

∈ FIRSTk(X) ∈ FOLLOWk(X)

FOLLOWk : VN → 2V
≤k

T# where
FOLLOWk(X) = {w | S

∗
=⇒ βXγ and w ∈ FIRSTk(γ)}

set of k–prefixes of terminal words that may immediately follow X

Syntax Analysis

FIRSTk

Theorem

FIRSTk(Z1,Z2, . . . ,Zn) =
FIRSTk(Z1)⊕kFIRSTk(Z2)⊕k . . .⊕kFIRSTk(Zn)

The recursive system of equations for FIRSTk is

FIRSTk(X) =
⋃

{X → α}
FIRSTk(α) ∀X ∈ VN

FIRSTk(a) = {a} ∀a ∈ VT
(Fik)

Syntax Analysis

FIRST1 Example

Grammar G2 below defines the same language as G0 and G1.

0 : S → E 3 : E ′ → +E 6 : T ′ → ∗T
1 : E → TE ′ 4 : T → FT ′ 7 : F → (E)
2 : E ′ → ε 5 : T ′ → ε 8 : F → id

The equations FIRST1 for grammar G2:

Syntax Analysis

Grammar G2 below defines the same language as G0 and G1

0 : S → E 3 : E ′ → +E 6 : T ′ → ∗T
1 : E → TE ′ 4 : T → FT ′ 7 : F → (E)
2 : E ′ → ε 5 : T ′ → ε 8 : F → id

The equations FIRST1 for grammar G2:

FIRST1(S) = FIRST1(E)
FIRST1(E) = FIRST1(T)⊕1FIRST1(E

′)
FIRST1(E

′) = {ε} ∪ {+}⊕1FIRST1(E)
FIRST1(T) = FIRST1(F)⊕1FIRST1(T

′)
FIRST1(T

′) = {ε} ∪ {∗}⊕1FIRST1(T)
FIRST1(F) = {Id} ∪ {(}⊕1FIRST1(E)⊕1{)}

Syntax Analysis

Iteration

Iterative computation of the FIRST1 sets:
S E E ′ T T ′ F

∅ ∅ ∅ ∅ ∅ ∅

Syntax Analysis

FOLLOWk

The system of equations for FOLLOWk is

FOLLOWk(X) =
⋃

{Y → ϕ1Xϕ2}
FIRSTk(ϕ2)⊕kFOLLOWk(Y) ∀X ∈ VN −

FOLLOWk(S) = {#}
(Fok)

Syntax Analysis

FOLLOWk Example

Regard grammar G2. The system of equations is:

FOLLOW1(S) = {#}
FOLLOW1(E) = FOLLOW1(S) ∪ FOLLOW1(E

′) ∪ {)}⊕1FOLLOW1(F)
FOLLOW1(E

′) = FOLLOW1(E)
FOLLOW1(T) = {ε,+}⊕1FOLLOW1(E) ∪ FOLLOW1(T

′)
FOLLOW1(T

′) = FOLLOW1(T)
FOLLOW1(F) = {ε, ∗}⊕1FOLLOW1(T)

Iterative computation of the FOLLOW1 sets:
S E E ′ T T ′ F

{#} ∅ ∅ ∅ ∅ ∅

