Syntax Analysis
 Recursive Equations over Grammars

- Wilhelm/Seidl/Hack: Compiler Design, Syntactic and Semantic Analysis-

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-saarland.de

29. Oktober 2013

Properties of a Grammar

Sometimes need to determine properties of (constituents of) a grammar:

- whether the grammar has useless symbols,
- what can start a word for a nonterminal,
- what can follow after a nonterminal.

Properties are expressed as recursive systems of equations.

Reachability and Productivity

Non-terminal A is
reachable: iff there exist $\varphi_{1}, \varphi_{2} \in V_{T} \cup V_{N}$ such that

$$
S \xlongequal{*} \varphi_{1} A \varphi_{2}
$$

productive: iff there exists $w \in V_{T}^{*}, A \xlongequal{*} w$

- These definitions are useless for tests; they involve quantifications over infinite sets.
- We need equivalent definitions that allow (efficient) computation.
- Eliminate non-reachable and non-productive nonterminals from the grammar,
- does not change the described language.

Two-Level Definitions

1. A non-terminal Y is reachable through its occurrence in $X \rightarrow \varphi_{1} Y \varphi_{2}$ iff X is reachable,
2. A non-terminal is reachable iff it is reachable through at least one of its occurrences,
3. S^{\prime} is reachable.
$\operatorname{Re}\left(S^{\prime}\right)=$ true
$\operatorname{Re}(X)=\bigvee_{Y \rightarrow \varphi_{1} X \varphi_{2}} \operatorname{Re}(Y) \quad \forall X \neq S^{\prime}$
4. A non-terminal X is productive through production $X \rightarrow \varphi$ iff all non-terminals occurring in φ are productive.
5. A non-terminal is productive iff it is productive through at least one of its alternatives.
$\operatorname{Pr}(X)=\bigvee_{X} \rightarrow{ }_{\alpha} \bigwedge\left\{\operatorname{Pr}(Y) \mid Y \in V_{N}\right.$ occurs in $\left.\alpha\right\}$ for all $X \in V_{N}$

- These definitions translate reachability and productivity for a given grammar into (recursive) systems of equations.
- System describes a function I: $\left[V_{N} \rightarrow \mathbb{B}\right] \rightarrow\left[V_{N} \rightarrow \mathbb{B}\right]$ with false \sqsubseteq true
- Iteration starting with smallest element,
- $\operatorname{Re}\left(S^{\prime}\right)=$ true, $\operatorname{Re}(X)=$ false, $\forall X \neq S^{\prime}$
- $\operatorname{Pr}(X)=$ false, $\forall X \in V_{N}$
- Least solution wanted to eliminate as many useless non-terminals as possible.

Trees, Subtrees, Tree Fragments

Parse tree

Subtree for X

upper treefragment for X
X reachable: Set of upper tree fragments for X not empty, X productive: Set of subtrees for X not empty.

Recursive System of Equations

Questions: Do these recursive systems of equations have

- solutions?
- unique solutions?

They do have solutions if

- the property domain D
- is partially ordered by some relation \sqsubseteq,
- has a uniquely defined smallest element, \perp,
- has a least upper bound, $d_{1} \sqcup d_{2}$, for each two elements d_{1}, d_{2}
and
- the functions occurring in the equations are monotonic.

Our domains are finite, all functions are monotonic.

Fixed Point Iteration

- Solutions are fixed points of a function $\mathrm{I}:\left[V_{N} \rightarrow D\right] \rightarrow\left[V_{N} \rightarrow D\right]$.
- Computed iteratively starting with \Perp, the function which maps all non-terminals to \perp.
- Evaluate equations until nothing changes.
- Iteration is guaranteed if D has only finitely ascending chains,

We always compute least fixed points.

Example: Productivity

Given the following grammar:
$G=\left(\left\{S^{\prime}, S, X, Y, Z\right\},\{a, b\},\left\{\begin{array}{lll}S^{\prime} & \rightarrow & S \\ S & \rightarrow & a X \\ X & \rightarrow & b S \mid a Y b Y \\ Y & \rightarrow & b a \mid a Z \\ Z & \rightarrow & a Z X\end{array}\right\}, S^{\prime}\right)$
Resulting system of equations:
Fixed-point iteration

$$
\begin{aligned}
& \operatorname{Pr}(S)=\operatorname{Pr}(X) \\
& \operatorname{Pr}(X)=\operatorname{Pr}(S) \vee \operatorname{Pr}(Y) \\
& \operatorname{Pr}(Y)=\operatorname{true} \vee \operatorname{Pr}(Z)=\text { true } \\
& \operatorname{Pr}(Z)=\operatorname{Pr}(Z) \wedge \operatorname{Pr}(X)
\end{aligned}
$$

S	X	Y	Z
false	false	false	false

Example: Reachability

Given the grammar $G=(\{S, U, V, X, Y, Z\},\{a, b, c, d\}$,
The equations:

$$
\left.\left\{\begin{array}{l}
S \rightarrow Y \\
Y \rightarrow Y Z|Y a| b \\
U \rightarrow V \\
X \rightarrow c \\
V \rightarrow V d \mid d \\
Z \rightarrow Z X
\end{array}\right\}, S\right)
$$

$$
\begin{aligned}
& \operatorname{Re}(S)=\text { true } \\
& \operatorname{Re}(U)=\text { false } \\
& \operatorname{Re}(V)=\operatorname{Re}(U) \vee \operatorname{Re}(V) \\
& \operatorname{Re}(X)=\operatorname{Re}(Z) \\
& \operatorname{Re}(Y)=\operatorname{Re}(S) \vee \operatorname{Re}(Y) \\
& \operatorname{Re}(Z)=\operatorname{Re}(Y) \vee \operatorname{Re}(Z)
\end{aligned}
$$

Fixed-point iteration:

S	U	V	X	Y	Z
true	false	false	false	false	false

First and Follow Sets

Parser generators need precomputed information about sets of

- prefixes of words for non-terminals (words that can begin words for non-terminals)
- followers of non-terminals (words that can follow a non-terminal).
Use: Removing non-determinism from expand moves of the P_{G}

Another Grammar for Arithmetic Expressions

Left-factored grammar G_{2}, i.e. left recursion removed.

$S \rightarrow E$		
E	$\rightarrow T E^{\prime}$	E generates T with a continuation E^{\prime}
E^{\prime}	$\rightarrow+E \mid \epsilon$	E^{\prime} generates possibly empty sequence of $+T \mathrm{~s}$
T	$\rightarrow F T^{\prime}$	T generates F with a continuation T^{\prime}
T^{\prime}	$\rightarrow * T \mid \epsilon$	T^{\prime} generates possibly empty sequence of $* F s$
F	$\rightarrow \operatorname{id} \mid(E)$	

G_{2} defines the same language as G_{0} and G_{1}.

The FIRST $_{1}$ Sets

A production $N \rightarrow \alpha$ is applicable for symbols that "begin" α
$S \rightarrow E$
$E \rightarrow T E^{\prime}$
$E^{\prime} \rightarrow+E \mid \epsilon$
$T \rightarrow F T^{\prime}$
$T^{\prime} \rightarrow * T \mid \epsilon$
$F \rightarrow \mathbf{i d} \mid(E)$

- Example: Arithmetic Expressions, Grammar G_{2}
- production $F \rightarrow$ id is applied when current symbol is id
- production $F \rightarrow(E)$ is applied when current symbol is (
- production $T \rightarrow F$ is applied when current symbol is id or (
- Formal definition:

$$
\operatorname{FIRS}_{1}(\alpha)=\left\{1: w \mid \alpha \stackrel{*}{\Longrightarrow} w, w \in V_{T}^{*}\right\}
$$

The FOLLOW 1 Sets

$$
\begin{aligned}
& S \rightarrow E \\
& E \rightarrow T E^{\prime} \\
& E^{\prime} \rightarrow+E \mid \epsilon \\
& T \rightarrow F T^{\prime} \\
& T^{\prime} \rightarrow * T \mid \epsilon
\end{aligned}
$$

A production $N \rightarrow \epsilon$ is applicable for symbols that "can follow" N in some derivation

- Example: Arithmetic Expressions, Grammar $G_{2} \quad F \rightarrow \mathbf{i d} \mid(E)$
- The production $E^{\prime} \rightarrow \epsilon$ is applied for symbols \# and)
- The production $T^{\prime} \rightarrow \epsilon$ is applied for symbols \#,) and +
- Formal definition:

$$
\operatorname{FOLLOW}_{1}(N)=\left\{a \in V_{T} \mid \exists \alpha, \gamma: S \xlongequal{*} \alpha N a \gamma\right\}
$$

Definitions

Let $k \geq 1$
k-prefix of a word $w=a_{1} \ldots a_{n}$
$k: w= \begin{cases}a_{1} \ldots a_{n} & \text { if } n \leq k \\ a_{1} \ldots a_{k} & \text { otherwise }\end{cases}$
k-concatenation
$\oplus_{k}: V^{*} \times V^{*} \rightarrow V \leq k$, defined by $u \oplus_{k} v=k: u v$ extended to languages
$k: L=\{k: w \mid w \in L\}$
$L_{1} \oplus_{k} L_{2}=\left\{x \oplus_{k} y \mid x \in L_{1}, y \in L_{2}\right\}$.
$V \leq k=\bigcup_{i=1}^{k} V^{i} \quad$ set of words of length at most $k \ldots$
$V_{\bar{T}}^{\leq k}=V_{\bar{T}}^{\leq k} \cup V_{T}^{k-1}\{\#\} \ldots$ possibly terminated by $\#$.

Properties

Let $k \geq 1$, and $L_{1}, L_{2}, L_{3} \subseteq V \leq k$.
(a) $L_{1} \oplus_{k}\left(L_{2} \oplus_{k} L_{3}\right)=\left(L_{1} \oplus_{k} L_{2}\right) \oplus_{k} L_{3}$
(b) $L_{1} \oplus_{k}\{\varepsilon\}=\{\varepsilon\} \oplus_{k} L_{1}=k: L_{1}$
(c) $L_{1} \oplus_{k} L_{2}=\emptyset \quad$ iff $\quad L_{1}=\emptyset \vee L_{2}=\emptyset$
(d) $\varepsilon \in L_{1} \oplus_{k} L_{2} \quad$ iff $\quad \varepsilon \in L_{1} \wedge \varepsilon \in L_{2}$
(e) $k:\left(L_{1} L_{2}\right)=k: L_{1} \oplus_{k} k: L_{2}$

FIRST $_{k}$ and FOLLOW $_{k}$

FIRST $_{k}:\left(V_{N} \cup V_{T}\right)^{*} \rightarrow 2^{V_{\bar{T}}^{k}}$ where $\operatorname{FIRST}_{k}(\alpha)=\{k: u \mid \alpha \xlongequal{*} u\}$
set of k-prefixes of terminal words for α
 FOLLOW $_{k}: V_{N} \rightarrow 2^{V_{T}^{\leq k}}$ where $\operatorname{FOLLOW}_{k}(X)=\left\{w \mid S \xlongequal{*} \beta X \gamma\right.$ and $\left.w \in \operatorname{FIRST}_{k}(\gamma)\right\}$
set of k-prefixes of terminal words that may immediately follow X

FIRST $_{k}$

Theorem
$\operatorname{FIRST}_{k}\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)=$
$\operatorname{FIRST}_{k}\left(Z_{1}\right) \oplus_{k} \operatorname{FIRST}_{k}\left(Z_{2}\right) \oplus_{k} \ldots \oplus_{k} \operatorname{FIRST}_{k}\left(Z_{n}\right)$

The recursive system of equations for $F I R S T_{k}$ is $\operatorname{FIRST}_{k}(X)={ }_{\{X \rightarrow \alpha\}} \operatorname{FIRST}_{k}(\alpha) \quad \forall X \in V_{N}$
$\operatorname{FIRST}_{k}(a)=\{a\} \quad \forall a \in V_{T}$

FIRST $_{1}$ Example

Grammar G_{2} below defines the same language as G_{0} and G_{1}.

$0:$	S	\rightarrow	E	$3:$	E^{\prime}	\rightarrow	$+E$	$6:$	T^{\prime}	\rightarrow	$* T$
$1:$	E	\rightarrow	$T E^{\prime}$	$4:$	T	\rightarrow	$F T^{\prime}$	$7:$	F	\rightarrow	(E)
$2:$	E^{\prime}	\rightarrow	ε	$5:$	T^{\prime}	\rightarrow	ε	$8:$	F	\rightarrow	id

The equations FIRS $_{1}$ for grammar G_{2} :

Grammar G_{2} below defines the same language as G_{0} and G_{1}

$0:$	S	\rightarrow	E	$3:$	E^{\prime}	\rightarrow	$+E$	$6:$	T^{\prime}	\rightarrow	$* T$
$1:$	E	\rightarrow	$T E^{\prime}$	$4:$	T	\rightarrow	$F T^{\prime}$	$7:$	F	\rightarrow	(E)
$2:$	E^{\prime}	\rightarrow	ε	$5:$	T^{\prime}	\rightarrow	ε	$8:$	F	\rightarrow	id

The equations FIRST $_{1}$ for grammar G_{2} :

$$
\begin{aligned}
& \operatorname{FIRST}_{1}(S)=\operatorname{FIRST}_{1}(E) \\
& \operatorname{FIRST}_{1}(E)=\operatorname{FIRST}_{1}(T) \oplus_{1} \operatorname{FIRST}_{1}\left(E^{\prime}\right) \\
& \operatorname{FIRST}_{1}\left(E^{\prime}\right)=\{\varepsilon\} \cup\{+\} \oplus_{1} \operatorname{FIRST}_{1}(E) \\
& \operatorname{FIRST}_{1}(T)=\operatorname{FIRST}_{1}(F) \oplus_{1} \operatorname{FIRST}_{1}\left(T^{\prime}\right) \\
& \operatorname{FIRST}_{1}\left(T^{\prime}\right)=\{\varepsilon\} \cup\{*\} \oplus_{1} \operatorname{FIRST}_{1}(T) \\
& \operatorname{FIRST}_{1}(F)=\{\mathrm{d}\} \cup\left\{(\} \oplus_{1} \operatorname{FIRST}_{1}(E) \oplus_{1}\{)\right\}
\end{aligned}
$$

Iteration

Iterative computation of the FIRST_{1} sets:

S	E	E^{\prime}	T	T^{\prime}	F
\emptyset	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset

FOLLOW $_{k}$

The system of equations for $F O L L O W_{k}$ is
$\operatorname{FOLLOW}_{k}(X)=\bigcup_{k} \operatorname{FIRST}_{k}\left(\varphi_{2}\right) \oplus_{k} \operatorname{FOLLOW}_{k}(Y) \forall X \in V_{N}-$
$\operatorname{FOLLOW}_{k}(S)=\{\#\}$
(Fok)

FOLLOW kxample

Regard grammar G_{2}. The system of equations is:

$$
\begin{aligned}
& \operatorname{FOLLOW}_{1}(S)=\{\#\} \\
& \left.\operatorname{FOLLOW}_{1}(E)=\operatorname{FOLLOW}_{1}(S) \cup \operatorname{FOLLOW}_{1}\left(E^{\prime}\right) \cup\{)\right\} \oplus_{1} \operatorname{FOLLOW}_{1}(F) \\
& \operatorname{FOLLOW}_{1}\left(E^{\prime}\right)=\operatorname{FOLLOW}_{1}(E) \\
& \operatorname{FOLLOW}_{1}(T)=\{\varepsilon,+\} \oplus_{1} \operatorname{FOLLOW}_{1}(E) \cup \operatorname{FOLLOW}_{1}\left(T^{\prime}\right) \\
& \operatorname{FOLLOW}_{1}\left(T^{\prime}\right)=\operatorname{FOLLOW}_{1}(T) \\
& \operatorname{FOLLOW}_{1}(F)=\{\varepsilon, *\} \oplus_{1} \operatorname{FOLLOW}_{1}(T)
\end{aligned}
$$

Iterative computation of the $F^{2} O L O W_{1}$ sets:

S	E	E^{\prime}	T	T^{\prime}	F
$\{\#\}$	\emptyset	\emptyset	\emptyset	\emptyset	\emptyset

