Attribute Dependencies

Wilhelm/Seidl/Hack: Compiler Design,
 Syntactic and Semantic Analysis –

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-saarland.de

14. November 2013

Attribute Dependencies

Attribute dependencies

- relate attribute occurrences (and instances),
- describe which attribute occurrences (instances) depend on which other occurrences (instances),
- constrain the order of attribute evaluation,
- are input to attribute-evaluator generators.

Types of Dependencies

Local dependencies between attribute occurrences in a production according to a semantic rule,

Individual dependency graph of attribute instances of a tree obtained by pasting together local dependency graphs of productions (instances)

Global dependencies between attributes of a non-terminal induced by individual dependency graphs.

- ► An individual dependency graph may contain a cycle. Attribute instances on this cycle can not be evaluated.
- ► AG is **noncircular** if none of its individual dependency graphs contains a cycle.

Theorem

AG is well-formed iff it is noncircular.

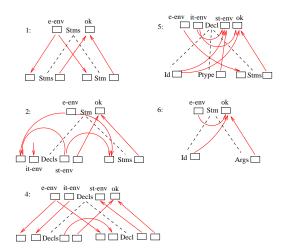
Local Dependencies

▶ production local dependency relation $Dp(p) \subseteq O(p) \times O(p)$:

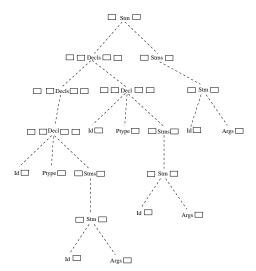
$$b_j \ Dp(p) \ a_i$$
 iff $a_i = f_{p,a,i}(\ldots,b_j,\ldots)$

- Attribute occurrence a_i at X_i depends on b_j at X_j iff b_j is argument in the semantic rule of a_i .
- ▶ Representation of this relation by its directed graph, the production local dependency graph, also denoted by Dp(p).

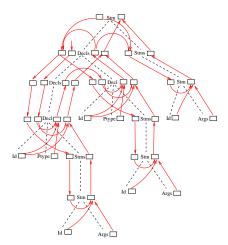
Local Dependencies in the Scopes-AG



Individual Dependency Graph



Individual Dependency Graphs



A First Attribute Evaluator

Principle:

- 1. Topological sorting of the individual dependency graph of a tree.
- 2. Attribute evaluation then done in the resulting order.

Topological sorting

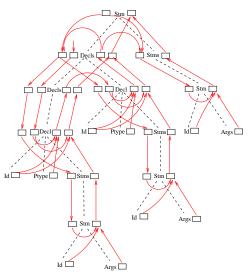
- takes a partial order (an acyclic graph),
- produces a total order compatible with the partial order,
- i.e., resulting total order, an evaluation order.

Topological sorting

- Keeps a set of candidates to be inserted next into the total order, initialized with the minimal elements of the order.
- ▶ In each step
 - Selects a candidate and inserts it into the total order,
 - Removes it from the set of candidates,
 - Removes it from the partial order,
 - Makes all elements only depending on this candidate to candidates,
- Until the set of candidates is empty.
- ▶ Partial order nonempty ⇒ graph acyclic.

Can serve as a dynamic test for well formedness.

Example Evaluation



Properties of this Evaluator

- Evaluation order determined at evaluation time, i.e. compile time; therefore this evaluator is called the dynamic evaluator,
- Additional effort for the determination of the evaluation order at evaluation time,
- "Data driven" strategy, i.e. the availability of its arguments triggers the evaluation of an instance,
- Evaluates all instances in a tree,
- ► Evaluates each instance exactly once.

Alternatives

- Evaluation order may be fixed before evaluation time, e.g. by a fixed evaluation "plan" for each production,
- "Demand driven" strategy
 - Starts with a demand of some maximal elements in the partial order,
 - Demand for evaluation is passed to arguments,
 - Computed values are passed back.
- Properties of the demand driven strategy:
 - ► Allows the selective evaluation of a subset of "interesting" attribute instances,
 - Only instances needed for the evaluation of these attribute instances are evaluated,
 - May evaluate instances several times, depending on the implementation, i.e. on whether computed values are stored.

Issues

Separation into

Strategy phase: Evaluation order is determined, Evaluation phase: Evaluation proper of the attribute instances directed by this evaluation strategy.

- Goal: Preparation of the strategy phase at generation time, i.e., evaluation orders, evaluation plans, etc. are precomputed from the AG; may include a *static* test for well formedness,
- Complexity of

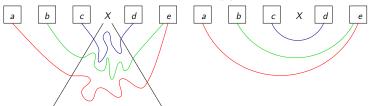
Generation: Runtime in terms of AG size, Evaluation: Size of evaluator, time optimality of evaluation.

AG subclasses, hierarchy: Expressivity, Generation algorithms, Complexity.

Lower Characteristic Graphs

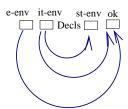
Given t, tree with root label X

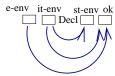
- "Projecting" the dependencies in Dt(t) onto the attributes of X yields the lower characteristic graph of X induced by t, $Dt \uparrow_t(X)$.
- ▶ $Dt \uparrow_t(X)$ contains an edge from $a \in Inh(X)$ to $b \in Syn(X)$ iff there exists a path from the instance of a at the root to the instance of b at the root in Dt(t).



Example: Lower Characteristic Graphs

Lower characteristic graphs induced by the previous individual dependency graph:





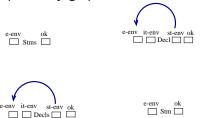
Upper Characteristic Graphs

n inner node in *t* labeled X, regards the upper tree fragment of *t* at *n*, $t \setminus n$,

- "Projecting" the dependencies in $Dt(t \setminus n)$ onto the attributes of X yields the **upper characteristic graph of** X **induced by** t, $Dt \downarrow_{t,n}(X)$.
- ▶ $Dt\downarrow_{t,n}(X)$ contains an edge from $a \in Syn(X)$ to $b \in Inh(X)$ iff there exists a path from the instance of a at n to the instance of b at n in $Dt(t \setminus n)$.

Example: Upper Characteristic Graphs

Upper characteristic graphs induced by the previous individual dependency graph:



Strategic Information in Characteristic Graphs

at the root of a subtree means:

it-env evaluated \Rightarrow st-env can be evaluated e-env not evaluated \Rightarrow ok cannot be evaluated during a downward visit.

e-env it-env st-env ok — □ □ Decl □ □ at the root of a subtree means:

st-env unevaluated ⇒ e-env cannot be evaluated during an upward visit;

Induced Global Dependencies

The induction of characteristic graphs:

- 1. Local dependency graphs, Dp(p): Relation on attribute occurrences of pType conversion + Pasting
- Individual dependency graph, Dt(t): Relation on attribute instances in t Transitive closure and restriction
- 3. Relation on attribute **instances** of node n with sym(n) = XType conversion
- 4. Lower characteristic graph $Dt\uparrow_t(X) \subseteq Inh(X) \times Syn(X)$: Relation on **attributes** of X or
- 5. Upper characteristic graph $Dt\downarrow_{t,n}(X)\subseteq Syn(X)\times Inh(X)$: Relation on **attributes** of X.

Computation of Global Dependency Graphs

- So far, the characteristic graph induced by one tree (fragment).
- Nonterminal X has
 - ▶ a set, $Dt\uparrow(X)$, of lower characteristic graphs and
 - ▶ a set, $Dt \downarrow (X)$, of upper characteristic graphs.
- These sets are computed at generation time by GFA.
- ▶ Only non–terminals can contribute, i.e., for $p: X_0 \to X_1 \dots X_{n_p}$ this means $X_i \in V_N$ for all $1 \le i \le n_p$..
- ▶ Watch out for "typing problems"!

Formalization of "Pasting"

 $R_0, R_1, \ldots, R_{n_p}$ relations on the sets $Attr(X_0), Attr(X_1), \ldots, Attr(X_{n_p})$, resp. The pasting operation $Dp(p)[\cdot]$ has functionality $Attr(X_0)^2 \times Attr(X_1)^2 \times \ldots \times Attr(X_{n_p})^2 \to O(p) \times O(p)$. $Dp(p)[R_0, R_1, \ldots, R_{n_p}]$ is the following relation on O(p):

$$Dp(p) \cup R_0^0 \cup R_1^1 \cup \ldots \cup R_{n_p}^{n_p},$$

where $b_i R_i^i a_i$ iff $b R_i a$.

The relations on the attributes of $X_0, X_1, \ldots, X_{n_p}$ are regarded as relations on attribute occurrences and unioned.

We write $Dp(p)[\emptyset, R_1, \dots, R_{n_p}]$ as $Dp(p)[R_1, \dots, R_{n_p}]$.

Formalization of Upward "Projection"

```
Upward projection R \uparrow (p)[\cdot] has functionality: Attr(X_1)^2 \times \ldots \times Attr(X_{n_p})^2 \to Inh(X_0) \times Syn(X_0). R \uparrow (p)[R_1, \ldots, R_n] is the following relation: b R \uparrow (p)[R_1, \ldots, R_n] \text{ a iff } b_0 Dp(p)[R_1, \ldots, R_n]^+ a_0.
```

Formalization of Downward "Projection"

Downward projection
$$R\downarrow_i(p)[\cdot]$$
 has functionality: $Attr(X_0)^2 \times Attr(X_1)^2 \times \ldots \times Attr(X_{n_p})^2 \to Syn(X_i) \times Inh(X_i)$ $R\downarrow_i(p)[R_0, R_1, \ldots, R_{n_p}]$ is defined by
$$b \ R\downarrow_i(p)[R_0, R_1, \ldots, R_{n_p}] \ a \qquad \text{iff}$$

$$b_i \ Dp(p)[R_0, R_1, \ldots, R_{i-1}, \emptyset, R_{i+1}, \ldots, R_{n_p}]^+ \ a_i$$

Extensions to Sets of Relations

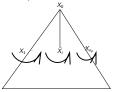
Let $\mathcal{R}_1, \ldots, \mathcal{R}_{n_p}$ be sets of relations on $Attr(X_1), \ldots, Attr(X_{n_p})$, resp.

```
\begin{array}{lcl} R\!\!\uparrow\!\!(p)[\mathcal{R}_1,\ldots,\mathcal{R}_{n_p}] &=& \{R\!\!\uparrow\!\!(p)[R_1,\ldots,R_{n_p}] \mid R_i\in\mathcal{R}_i, (1\leq i\leq n_p)\} \text{ and } \\ R\!\!\downarrow_i\!\!(p)[\mathcal{R}_0,\mathcal{R}_1,\ldots,\mathcal{R}_{n_p}] &=& \{R\!\!\downarrow_i\!\!(p)[R_0,R_1,\ldots,R_{n_p}] \mid R_j\in\mathcal{R}_j \ (0\leq j\leq n_p)\} \\ & \text{for all } i \text{ in } (1\leq i\leq n_p). \end{array}
```

GFA: Lower Characteristic Graphs

Evaluation time:

How to compute $Dt\uparrow_t(X_0)$ for a tree t with root label X_0 and $prod(\varepsilon)=p:X_0\to X_1\ldots X_{n_p}$? Let the relations $Dt\uparrow_{t/1}(X_1),\ldots,Dt\uparrow_{t/n_p}(X_{n_p})$ be already computed.



Compute $Dt \uparrow_t(X_0)$ locally as

$$Dt\uparrow_t(X_0) = R\uparrow(p)[Dt\uparrow_{t/1}(X_1),\ldots,Dt\uparrow_{t/n_p}(X_{n_p})]$$

GFA: Lower Characteristic Graphs cont'd

This suggests for the generation time:

$$Dt\uparrow(X) = \bigcup_{p:\ p[0] = X} R\uparrow(p)[Dt\uparrow(p[1]), \dots, Dt\uparrow(p[n_p])]$$

Least fixpoint is the set of the sets of lower characteristic graphs.

GFA-Problem Lower Characteristic Graphs

One step in the fixpoint iteration for production p:

- 1. Paste all combinations of lower characteristic graphs onto Dp(p),
- 2. Project the resulting graphs onto the attributes of X_0 ,
- 3. Form the union all the resulting sets for X_0 .

bottom up-GFA-Problem lower characteristic graphs	
lattices	$\{D(X) = \mathcal{P}(\mathcal{P}(Inh(X) \times Syn(X)))\}_{X \in V_N}$
part. order	\subseteq (subset inclusion on sets of relations)
bottom	∅ (empty set of relations)
transf. fct.	$\{Lc_p: D(p[1]) \times \ldots \times D(p[n_p]) \rightarrow D(p[0]) \mid$
	$Lc_p(\mathcal{R}_1,\ldots,\mathcal{R}_{n_p})=R\uparrow(p)[\mathcal{R}_1,\ldots,\mathcal{R}_{n_p}]\}_{p\in\mathcal{P}}$
comb. fct.	∪ (union on sets of relations)

A Static Non-circularity Test

- ► A lower char. graph represents all dependencies in the trees inducing it.
- Pasting all combinations of lower char. graphs onto local dep. graphs produces a cyclic graph if AG is circular. Hence:
- ▶ AG is noncircular iff all graphs in $Dp(p)[Dt\uparrow(X_1),...,Dt\uparrow(X_{n_p})]$ for all productions p are noncyclic.
- ▶ $|\bigcup_X Dt \uparrow (X)|$ exponential in |Attr|.
- ► The non-circularity test is exponential.

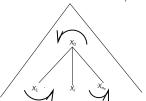
GFA: Upper Characteristic Graphs

Compile time:

Regard p applied at node n in t.

Already computed

 $Dt\downarrow_{t,n}(X_0)$ and $Dt\uparrow_{t/n1}(X_1), \ldots, Dt\uparrow_{t/nn_p}(X_{n_p}).$



Compute $Dt\downarrow_{t,ni}(X_i)$ $(1 \le i \le n_p)$ using the operation $R\downarrow_i(p)[\ldots]$.

GFA: Upper Characteristic Graphs cont'd

This suggests for **generation time**:

$$Dt\downarrow(S) = \{\emptyset\}$$

$$Dt\downarrow(X) = \bigcup_{p[i]=X} R\downarrow_i(p)[Dt\downarrow(p[0]), Dt\uparrow(p[1]), \dots, Dt\uparrow(p[n_p])]$$

Least fixpoint is the set of the sets of upper characteristic graphs.

GFA-Problem Upper Characteristic Graphs

```
top down-GFA-problem upper characteristic graphs  \begin{array}{ll} \text{Lattices} & \{D(X) = \mathcal{P}(\mathcal{P}(Syn(X) \times Inh(X)))\}_{X \in V_N} \\ \text{part. order} \subseteq & \text{(subset inclusion on sets of relations)} \\ \text{bottom} & \emptyset \\ \text{transf. fct. } & \{Uc_{p,i} : D(p[0]) \rightarrow D(p[i]) \\ & Uc_{p,i}(\mathcal{R}) = R \downarrow_i(p)[\mathcal{R}, Dt \uparrow (p[1]), \ldots, Dt \uparrow (p[n_p])]\}_{p \in \mathcal{P}, 1 \leq i \leq n_p} \\ \text{comb. fct.} & \text{(union on sets of relations)} \end{array}
```

- ► The sets of lower characteristic graphs are assumed to be computed before.
- ▶ They are constant parts of the functions Ucp,i.

Resumee Characteristic Graphs

Characteristic graphs are:

Exact: For each characteristic graph there is at least one tree

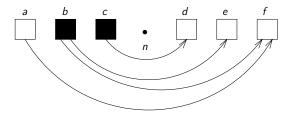
(fragment), whose individual dependency graph

induces it,

Costly: There may be exponentially many of them.

Approximative Attribute Dependencies

What is the "strategic" interpretation of edges in (lower) characteristic graphs?

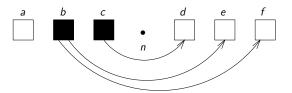


Evaluator visits subtree at n with b, c evaluated.

Through this visit, it can

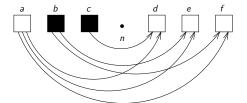
- evaluate d and e,
- ▶ not evaluate f.

What does "approximation" mean? deleting edges? adding edges? Deleting the edge from a to f:



- ► Evaluator assumes, *f* can be evaluated when value of *b* is known.
- ▶ Makes a fruitless visit to the subtree at *n*.
- ► Inefficient strategy!

Adding edges from a to d and e:



- ► Evaluator would not visit the subtree at *n* with evaluated *b* and *c* and unevaluated *a*.
- Evaluator would only visit the subtree, when also the value of a is known.
- Visits may be delayed.

Resumee:

- ▶ Reduced dependency graphs may cause fruitless visits,
- Augmented dependency graphs may delay visits,
- ► Added edges may introduce cycles (cause an infinite delay).

I/O-Graphs

- Are an upper bound on the lower dependencies,
- ► There may be I/O-graphs with no corresponding tree,
- ▶ There is one graph per nonterminal.

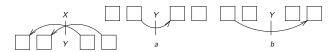
bottom up-GFA-problem I/O-graphs lattices $\{D(X) = \mathcal{P}(Inh(X) \times Syn(X))\}_{X \in V_N}$ part. order \subseteq (subset inclusion on relations) bottom \emptyset transf. fct. $\{Io: D(p[1]) \times \ldots \times D(p[n_p]) \to D(p[0]) \mid Io(g_1, \ldots, g_{n_p}) = R \uparrow (p)[g_1, \ldots, g_{n_p}]\}_{p \in \mathcal{P}}$ comb. fct. \cup (union on relations)

Yields the system of equations:

$$IO(X) = \bigcup_{p:p[0]=X} R\uparrow(p)[IO(p[1]), \ldots, IO(p[n_p])]$$

AG is **absolutely noncircular** if for all productions p the graph $D_{p}(x)[f](x)[f]$

A Noncircular, but not Absolutely Noncircular AG



Its only two trees have no cyclic dependencies.

For computing IO(X) Dp(2) and Dp(3) are unioned and inserted in Dp(1) producing a cycle.

