Lattices

Slides follow Davey and Priestley: Introduction to Lattices and Order

Sebastian Hack
hack@cs.uni-saarland.de

12. Januar 2012

UNIVERSITÄT
DES
SAARLANDES

Partial Orders

Let P be a set. A binary relation \sqsubseteq on P is a partial order iff it is:
1 reflexive: $(\forall x \in P) x \sqsubseteq x$
2 transitive: $(\forall x, y, z \in P) x \sqsubseteq y \wedge y \sqsubseteq z \Longrightarrow x \sqsubseteq z$
3 antisymmetric: $(\forall x, y \in P) x \sqsubseteq y \wedge y \sqsubseteq x \Longrightarrow x=y$

An element \perp with $\perp \sqsubseteq x$ for all $x \in P$ is called bottom element. It is unique by definition. Analogously, T is called top element, if $T \sqsupseteq x$ for all $x \in P$.

Duality

Let P an ordered set. The dual P^{D} of P is obtained by defining $x \sqsubseteq y$ in P^{D} whenever $y \sqsubseteq x$ in P.

For every statement Φ about P there is a dual statement Φ^{D} about P^{D}. It is obtained from P by exchanging \sqsubseteq by \sqsupseteq.

If Φ is true for all ordered sets, Φ^{D} is also true for all ordered sets.

Hasse Diagrams

A partial order (P, \sqsubseteq) is typically visualized by a Hasse diagram:
■ Elements of P are points in the plane

- If $x \sqsubseteq z$, then z is drawn above x.

■ If $x \sqsubseteq z$, and there is no y with $x \sqsubseteq y \sqsubseteq z$, then x and z are connected by a line
The Hasse diagram of the dual of P is obtained by "flipping" the one of P by 180 degrees.

Upper and Lower Bounds

Let (P, \sqsubseteq) be a partial ordered set and let $S \subseteq P$. An element $x \in P$ is a lower bound of S, if $x \sqsubseteq s$ for all $s \in S$. Let

$$
S^{\ell}=\{x \in P \mid(\forall s \in S) x \sqsubseteq s\}
$$

be the set of all lower bounds of the set S. Analogously:

$$
S^{u}=\{x \in P \mid(\forall s \in S) x \sqsupseteq s\}
$$

Note: $\emptyset^{u}=\emptyset^{\ell}=P$.
If S^{ℓ} has a greatest element, this element is called the greatest lower bound and is written $\inf S$. (Dually for least upper bound and sup S.) The greatest lower bound only exists, iff there is a $x \in P$ such that

$$
(\forall y \in P)(((\forall s \in S) s \sqsupseteq y) \Longleftrightarrow x \sqsupseteq y)
$$

Lattices

The order-theoretic definition

Let P be an ordered set.
■ If $\sup \{x, y\}$ and $\inf \{x, y\}$ exist for every pair $x, y \in P$ then P is called a lattice.

- If For every $S \subseteq P$, sup S and $\inf S$ exist, then P is called a complete lattice.

The Connecting Lemma

Let L be a lattice and let $a, b \in L$. The following statements are equivalent:
$1 a \sqsubseteq b$
$2 \inf \{a, b\}=a$
$3 \sup \{a, b\}=b$

Lattices

The algebraic definition

We now view L as an algebraic structure $(L ; \sqcup, \sqcap)$ with two binary operators

$$
x \sqcup y:=\sup \{x, y\} \quad x \sqcap y:=\inf \{x, y\}
$$

Theorem: \sqcup and \sqcap satisfy for all $a, b, c \in L$:
(L1) $(a \sqcup b) \sqcup c=a \sqcup(b \sqcup c) \quad$ associativity
$(L 1)^{D}(a \sqcap b) \sqcap c=a \sqcap(b \sqcap c)$
(L2) $a \sqcup b=b \sqcup a$
$(L 2)^{D} a \sqcap b=b \sqcap a$
(L3) $a \sqcup a=a$
$(L 3)^{D} a \sqcap a=a$
(L4) $a \sqcup(a \sqcap b)=a \quad$ absorption
$(L 4)^{D} a \sqcap(a \sqcup b)=a$
idempotency

Lattices

The algebraic definition

We now view L as an algebraic structure $(L ; \sqcup, \sqcap)$ with two binary operators

$$
x \sqcup y:=\sup \{x, y\} \quad x \sqcap y:=\inf \{x, y\}
$$

Theorem: \sqcup and \sqcap satisfy for all $a, b, c \in L$:
(L1) $\quad(a \sqcup b) \sqcup c=a \sqcup(b \sqcup c) \quad$ associativity
$(L 1)^{D}(a \sqcap b) \sqcap c=a \sqcap(b \sqcap c)$
(L2) $a \sqcup b=b \sqcup a \quad$ commutativity
$(L 2)^{D} a \sqcap b=b \sqcap a$
(L3) $a \sqcup a=a$
$(L 3)^{D} a \sqcap a=a$
(L4) $a \sqcup(a \sqcap b)=a \quad$ absorption
$(\angle 4)^{D} a \sqcap(a \sqcup b)=a$
Proof: (L2) is immediate because $\sup \{x, y\}=\sup \{y, x\}$. (L3), (L4) follow from the connection lemma. (L1) for exercise. The dual laws come by duality.

Lattices

From the algebraic to the order-theoretic definition
Let $(L ; \sqcup, \sqcap)$ be a set with two operators satisfying $(L 1)-(L 4)$ and $(L 1)^{D}-(L 4)^{D}$

Theorem:
1 Define $a \sqsubseteq b$ on L if $a \sqcup b=b$. Then, \sqsubseteq is a partial oder
2 With $\sqsubseteq,(L ; \sqsubseteq)$ is a lattice with

$$
\sup \{a, b\}=a \sqcup b \quad \text { and } \quad \inf \{a, b\}=a \sqcup b
$$

Lattices

From the algebraic to the order-theoretic definition

Let $(L ; \sqcup, \sqcap)$ be a set with two operators satisfying $(L 1)-(L 4)$ and $(L 1)^{D}-(L 4)^{D}$

Theorem:
1 Define $a \sqsubseteq b$ on L if $a \sqcup b=b$. Then, \sqsubseteq is a partial oder
2 With $\sqsubseteq,(L ; \sqsubseteq)$ is a lattice with

$$
\sup \{a, b\}=a \sqcup b \quad \text { and } \quad \inf \{a, b\}=a \sqcup b
$$

Proof:
1 reflexive by (L3), antisymmetric by (L2), transitive by (L1)
2 First show that $a \sqcup b \in\{a, b\}^{u}$ then show that $d \in\{a, b\}^{u} \Longrightarrow(a \sqcup b) \sqsubseteq d$. Easy by applying the $(L i)$ to the suitable premises (Exercise).

Finite Lattices

Associativity allows us to write sequences of joins unambiguously without brackets. One can show (by induction) that

$$
\bigsqcup\left\{a_{1}, \ldots, a_{n}\right\}=a_{1} \sqcup \cdots \sqcup a_{n}
$$

for $\left\{a_{1}, \ldots, a_{n}\right\} \in L, n \geq 2$. Thus, for any finite, non-empty subset $F \in L$, \sqcup and Π exist.

Thus, every finite lattice bounded (as a greatest and least element) with

$$
\top=\bigsqcup L \quad \perp=\rceil L
$$

Further, every finite lattice is complete because

$$
\perp=\bigsqcup \emptyset \quad \top=\rceil \emptyset
$$

Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and $f: L \rightarrow L$ be monotone. Then

$$
\prod\{x \in L \mid f(x) \sqsubseteq x\}
$$

is the least fixpoint of f. (The dual holds analogously).

Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and $f: L \rightarrow L$ be monotone. Then

$$
\prod\{x \in L \mid f(x) \sqsubseteq x\}
$$

is the least fixpoint of f. (The dual holds analogously).

Proof: Let $R:=\{x \in L \mid f(x) \sqsubseteq x\}$ be the set of elements of which f is reductive. Let $x \in R$. Consider $z=\Pi R$. z exists, because L is complete. $z \sqsubseteq x$ because z is a lower bound of x. By monotonicity, $f(z) \sqsubseteq f(x)$. Because $x \in R, f(z) \sqsubseteq x$. Thus, $f(z)$ is also a lower bound of R. Thus, $f(z) \sqsubseteq y$ for all $y \in R$. Because z is the greatest lower bound of R, $f(z) \sqsubseteq z$, thus $z \in R$. By monotonicity, $f(f(z)) \sqsubseteq f(z)$. Hence, $f(z) \in R$. Because z is a lower bound of $R, z \sqsubseteq f(z)$ and $z=f(z)$.

Fixpoint by Iteration

Let L be a complete finite lattice and $f: L \rightarrow L$ be monotone. Hence, every chain $a_{1} \sqsubseteq \cdots \sqsubseteq a_{n}$ stabilizes, i.e. there is a $k<n$ such that $a_{k}=a_{k+1}$
1 It holds $\perp \sqsubseteq f(\perp) \sqsubseteq f^{2}(\perp) \sqsubseteq \ldots$
$2 d=f^{n-1}(\perp)=f^{n}(\perp)$ is the smallest element d^{\prime} with $f\left(d^{\prime}\right) \sqsubseteq d^{\prime}$

Fixpoint by Iteration

Let L be a complete finite lattice and $f: L \rightarrow L$ be monotone. Hence, every chain $a_{1} \sqsubseteq \cdots \sqsubseteq a_{n}$ stabilizes, i.e. there is a $k<n$ such that $a_{k}=a_{k+1}$
1 It holds $\perp \sqsubseteq f(\perp) \sqsubseteq f^{2}(\perp) \sqsubseteq \ldots$
$2 d=f^{n-1}(\perp)=f^{n}(\perp)$ is the smallest element d^{\prime} with $f\left(d^{\prime}\right) \sqsubseteq d^{\prime}$

Proof: (1) exercise. (2): d exists because of (1) and the assumption that every ascending chain stabilizes. Consider another $d^{\prime} \sqsupseteq d$ with $f\left(d^{\prime}\right) \sqsubseteq d^{\prime}$. We show (by induction) that for every $i \in \mathbb{N}$ there is $f^{i}(\perp) \sqsubseteq d^{\prime}$. Let $i=0: \perp \sqsubseteq d^{\prime}$ holds. Now assume $f^{i-1}(\perp) \sqsubseteq d^{\prime}$. Then

$$
f^{i}(\perp)=f\left(f^{i-1}(\perp)\right) \sqsubseteq f\left(d^{\prime}\right) \sqsubseteq d^{\prime}
$$

