Slides follow Davey and Priestley: Introduction to Lattices and Order

Sebastian Hack
hack@cs.uni-saarland.de

12. Januar 2012

Partial Orders

Let P be a set. A binary relation \sqsubseteq on P is a partial order iff it is:

- **1** reflexive: $(\forall x \in P) x \sqsubseteq x$
- 2 transitive: $(\forall x, y, z \in P) x \sqsubseteq y \land y \sqsubseteq z \implies x \sqsubseteq z$
- 3 antisymmetric: $(\forall x, y \in P) x \sqsubseteq y \land y \sqsubseteq x \implies x = y$

An element \bot with $\bot \sqsubseteq x$ for all $x \in P$ is called bottom element. It is unique by definition. Analogously, \top is called top element, if $\top \sqsupseteq x$ for all $x \in P$.

Duality

Let P an ordered set. The dual P^D of P is obtained by defining $x \sqsubseteq y$ in P^D whenever $y \sqsubseteq x$ in P.

For every statement Φ about P there is a dual statement Φ^D about P^D . It is obtained from P by exchanging \sqsubseteq by \supseteq .

If Φ is true for all ordered sets, Φ^D is also true for all ordered sets.

Hasse Diagrams

A partial order (P, \sqsubseteq) is typically visualized by a Hasse diagram:

- Elements of *P* are points in the plane
- If $x \sqsubseteq z$, then z is drawn above x.
- If $x \sqsubseteq z$, and there is no y with $x \sqsubseteq y \sqsubseteq z$, then x and z are connected by a line

The Hasse diagram of the dual of P is obtained by "flipping" the one of P by 180 degrees.

Upper and Lower Bounds

Let (P, \sqsubseteq) be a partial ordered set and let $S \subseteq P$. An element $x \in P$ is a lower bound of S, if $x \sqsubseteq s$ for all $s \in S$. Let

$$S^{\ell} = \{ x \in P \mid (\forall s \in S) \, x \sqsubseteq s \}$$

be the set of all lower bounds of the set S. Analogously:

$$S^{u} = \{ x \in P \mid (\forall s \in S) \, x \supseteq s \}$$

Note: $\emptyset^u = \emptyset^\ell = P$.

If S^ℓ has a greatest element, this element is called the greatest lower bound and is written inf S. (Dually for least upper bound and $\sup S$.) The greatest lower bound only exists, iff there is a $x \in P$ such that

$$(\forall y \in P) (((\forall s \in S) s \sqsubseteq y) \iff x \sqsubseteq y)$$

The order-theoretic definition

Let P be an ordered set.

- If $\sup\{x,y\}$ and $\inf\{x,y\}$ exist for every pair $x,y \in P$ then P is called a lattice.
- If For every $S \subseteq P$, sup S and inf S exist, then P is called a complete lattice.

The Connecting Lemma

Let L be a lattice and let $a, b \in L$. The following statements are equivalent:

- **1** a □ b
- $2 \inf\{a, b\} = a$

The algebraic definition

We now view L as an algebraic structure $(L; \sqcup, \sqcap)$ with two binary operators

$$x \sqcup y := \sup\{x, y\}$$
 $x \sqcap y := \inf\{x, y\}$

Theorem: \sqcup and \sqcap satisfy for all $a, b, c \in L$:

$$(L1) \quad (a \sqcup b) \sqcup c = a \sqcup (b \sqcup c) \qquad \text{associativity}$$

$$(L1)^D \quad (a \sqcap b) \sqcap c = a \sqcap (b \sqcap c)$$

$$(L2) \quad a \sqcup b = b \sqcup a \qquad \text{commutativity}$$

$$(L2)^D \quad a \sqcap b = b \sqcap a$$

$$(L3) \quad a \sqcup a = a \qquad \text{idempotency}$$

$$(L3)^D \quad a \sqcap a = a$$

$$(L4) \quad a \sqcup (a \sqcap b) = a \qquad \text{absorption}$$

$$(L4)^D \quad a \sqcap (a \sqcup b) = a$$

The algebraic definition

We now view L as an algebraic structure $(L; \sqcup, \sqcap)$ with two binary operators

$$x \sqcup y := \sup\{x, y\}$$
 $x \sqcap y := \inf\{x, y\}$

Theorem: \sqcup and \sqcap satisfy for all $a, b, c \in L$:

$$(L1) \quad (a \sqcup b) \sqcup c = a \sqcup (b \sqcup c) \qquad \text{associativity}$$

$$(L1)^D \quad (a \sqcap b) \sqcap c = a \sqcap (b \sqcap c)$$

$$(L2) \quad a \sqcup b = b \sqcup a \qquad \text{commutativity}$$

$$(L2)^D \quad a \sqcap b = b \sqcap a$$

$$(L3) \quad a \sqcup a = a \qquad \text{idempotency}$$

$$(L3)^D \quad a \sqcap a = a$$

$$(L4) \quad a \sqcup (a \sqcap b) = a \qquad \text{absorption}$$

$$(L4)^D \quad a \sqcap (a \sqcup b) = a$$

Proof: (L2) is immediate because $\sup\{x,y\} = \sup\{y,x\}$. (L3), (L4) follow from the connection lemma. (L1) for exercise. The dual laws come by duality.

From the algebraic to the order-theoretic definition

Let $(L; \sqcup, \sqcap)$ be a set with two operators satisfying (L1)–(L4) and $(L1)^D$ – $(L4)^D$

Theorem:

- **1** Define $a \sqsubseteq b$ on L if $a \sqcup b = b$. Then, \sqsubseteq is a partial oder
- 2 With \sqsubseteq , $(L; \sqsubseteq)$ is a lattice with

$$\sup\{a,b\} = a \sqcup b$$
 and $\inf\{a,b\} = a \sqcup b$

From the algebraic to the order-theoretic definition

Let $(L; \sqcup, \sqcap)$ be a set with two operators satisfying (L1)–(L4) and $(L1)^D$ – $(L4)^D$

Theorem:

- **1** Define $a \sqsubseteq b$ on L if $a \sqcup b = b$. Then, \sqsubseteq is a partial oder
- 2 With \sqsubseteq , $(L; \sqsubseteq)$ is a lattice with

$$\sup\{a,b\} = a \sqcup b$$
 and $\inf\{a,b\} = a \sqcup b$

Proof:

- 1 reflexive by (L3), antisymmetric by (L2), transitive by (L1)
- 2 First show that $a \sqcup b \in \{a, b\}^u$ then show that $d \in \{a, b\}^u \implies (a \sqcup b) \sqsubseteq d$. Easy by applying the (Li) to the suitable premises (Exercise).

Finite Lattices

Associativity allows us to write sequences of joins unambiguously without brackets. One can show (by induction) that

$$\bigsqcup\{a_1,\ldots,a_n\}=a_1\sqcup\cdots\sqcup a_n$$

for $\{a_1,\ldots,a_n\}\in L,\ n\geq 2$. Thus, for any finite, non-empty subset $F\in L$, \bigsqcup and \bigcap exist.

Thus, every finite lattice bounded (as a greatest and least element) with

$$\top = \bigsqcup L \qquad \bot = \prod L$$

Further, every finite lattice is complete because

$$\perp = \bigsqcup \emptyset \qquad \top = \bigcap \emptyset$$

Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and $f: L \rightarrow L$ be monotone. Then

$$\bigcap \{x \in L \mid f(x) \sqsubseteq x\}$$

is the least fixpoint of f. (The dual holds analogously).

Knaster-Tarski Fixpoint Theorem

Let *L* be a complete lattice and $f: L \rightarrow L$ be monotone. Then

$$\bigcap \{x \in L \mid f(x) \sqsubseteq x\}$$

is the least fixpoint of f. (The dual holds analogously).

Proof: Let $R:=\{x\in L\mid f(x)\sqsubseteq x\}$ be the set of elements of which f is reductive. Let $x\in R$. Consider $z=\bigcap R$. z exists, because L is complete. $z\sqsubseteq x$ because z is a lower bound of x. By monotonicity, $f(z)\sqsubseteq f(x)$. Because $x\in R$, $f(z)\sqsubseteq x$. Thus, f(z) is also a lower bound of R. Thus, $f(z)\sqsubseteq y$ for all $y\in R$. Because z is the greatest lower bound of R, $f(z)\sqsubseteq z$, thus $z\in R$. By monotonicity, $f(f(z))\sqsubseteq f(z)$. Hence, $f(z)\in R$. Because z is a lower bound of R, $z\subseteq f(z)$ and z=f(z).

Fixpoint by Iteration

Let L be a complete finite lattice and $f: L \to L$ be monotone. Hence, every chain $a_1 \sqsubseteq \cdots \sqsubseteq a_n$ stabilizes, i.e. there is a k < n such that $a_k = a_{k+1}$

- 1 It holds $\bot \sqsubseteq f(\bot) \sqsubseteq f^2(\bot) \sqsubseteq ...$
- 2 $d = f^{n-1}(\bot) = f^n(\bot)$ is the smallest element d' with $f(d') \sqsubseteq d'$

Fixpoint by Iteration

Let L be a complete finite lattice and $f: L \to L$ be monotone. Hence, every chain $a_1 \sqsubseteq \cdots \sqsubseteq a_n$ stabilizes, i.e. there is a k < n such that $a_k = a_{k+1}$

- 1 It holds $\bot \sqsubseteq f(\bot) \sqsubseteq f^2(\bot) \sqsubseteq ...$

Proof: (1) exercise. (2): d exists because of (1) and the assumption that every ascending chain stabilizes. Consider another $d' \supseteq d$ with $f(d') \sqsubseteq d'$. We show (by induction) that for every $i \in \mathbb{N}$ there is $f^i(\bot) \sqsubseteq d'$. Let i = 0: $\bot \sqsubseteq d'$ holds. Now assume $f^{i-1}(\bot) \sqsubseteq d'$. Then

$$f^{i}(\bot) = f(f^{i-1}(\bot)) \sqsubseteq f(d') \sqsubseteq d'$$