
Attribute Evaluation

Attribute Evaluation

Wilhelm/Seidl/Hack: Compiler Design, Volume 2, Chapter 4 –
Reinhard Wilhelm

Universität des Saarlandes
wilhelm@cs.uni-saarland.de

Attribute Evaluation

Issues

◮ Separation into

Strategy phase: Evaluation order is determined,
Evaluation phase: Evaluation proper of the attribute instances

directed by this evaluation strategy.

◮ Complexity of

Generation: Runtime in terms of AG size,
Evaluation: Size of evaluator, time optimality of evaluation.

◮ AG subclasses, hierarchy:

Expressivity,
Membership test,
Generation algorithms,
Complexity of generation and evaluation,

◮ Implementation issues.

Attribute Evaluation

Attribute Evaluation

Strategy phase: Determines the evaluation order, many approaches:

◮ Topological sorting of the individual dependency
graph as in the dynamic evaluator,

◮ Fully predetermined at generation time, i.e. there
is one fixed evaluation program for each
production,

pass oriented: Attributes are associated with
passes over the tree,

visit oriented: Attributes are associated with
visits to production (instances),

◮ Selection between different precomputed
evaluation orders, i.e. several precomputed
evaluation programs for each production.

Attribute Evaluation

Evaluation phase: Alternatives,

data driven: Attribute instances are evaluated when
arguments are available,

demand driven: demand for attribute values is
recursively propagated, values are
returned.

Implementation issues: Storage of attribute values:

◮ In the tree,
◮ On stacks,
◮ In global variables (shared by several instances of

one attribute).

Attribute Evaluation

Attribute Grammar Classes

Membership test:

Dynamic: Evaluation for all trees is possible by a defining
evaluator,

Static: Dependencies of the AG satisfy a defining criterium.

Example: Noncircular AGs,

dynamic criterium: defining evaluator is the dynamic evaluator,
AG is noncircular iff topological sorting is possible for
all individual dependency graphs,

static criterium: no cyclic graphs result from pasting lower char.
graphs onto local graphs.

X–AG class of AGs with property X .
NC-AG class of noncircular AGs.
ANC-AG class of absolutely noncircular AGs.

Attribute Evaluation

Static Membership Tests

For all productions p:

◮ Paste graphs for X0,X1, . . . ,Xnp onto Dp(p),

◮ Check for cycles.

◮ Graphs (to be pasted) for smaller AG–classes
◮ contain more edges, i.e. lead to cycles (and rejection) more

often,
◮ constrain more the evaluation strategy.

Attribute Evaluation

Complexity

Membership test:

◮ NC–AG: exponential,
◮ often same as that of evaluator generation,

i.e. computation of global dependencies
dominates evaluator generation.

Evaluation, time:

◮ no. of application of semantic rules plus
◮ tree walking effort plus
◮ construction of evaluation order.
◮ Optimality: at most one evaluation of each

attribute instance + ?

Attribute Evaluation

Evaluation, space:

(static) size of the evaluator as function of the size of
the AG,

(dynamic) space for attribute values and trees etc.

Attribute Evaluation

Space Complexity of the Dynamic Evaluator

Construction of evaluation order uses Dt(t)
Let
maxattr max. no. of attributes per non–terminal,
maxnont be max. no. of non–terminals in production right sides.

|Dp(p)| ≤ ((maxnont + 1) ×
1

2
maxattr)2

Let ap be no. of prod. applications in tree t,

|Dt(t)| ≤ ap × ((maxnont + 1) ×
1

2
maxattr)2

Space complexity for topol. sorting is O(maxattr2)

Attribute Evaluation

Dynamic Space

1: 2: 3:

S

X X

X

a

X

Demand driven evaluation,

◮ attribute values on a stack:
needs a stack of depth O(height(t)) and t.
Time complexity O(4height(t)) or O(2|V (t)|).

◮ atttribute values in the tree:
Space complexity O(|V (t)| + |t|) space and O(|V (t)|) time.

Attribute Evaluation

Visit Oriented Evaluation

◮ Attribute (instance) evaluation happens during a sequence of
visits to production instances,

◮ a visit
◮ starts by descending from the upper context,
◮ recursively visiting subtrees, and
◮ ends by returning to the upper context.

◮ a (statically computed) visit sequence describes the
evaluation of all attr. occ. of a production,

◮ there may be one or more visit sequences to a production,

one: describes evaluation for all instances of the
production in all trees,

several: the right visit sequence for a production instance
has to be determined from the context,

Attribute Evaluation

◮ the visit sequences (of productions) are computed from ordered
partitions of the non–terminals occurring in the productions,

◮ an ordered partition for X splits Attr(X) into a sequence of
subsets associated with consecutive visits,

◮ ordered partitions for X are computed from a total order on
Attr(X),

◮ these total orders are computed from exact or approximate
global dependency relations.

Attribute Evaluation

Total Orders on Attr(X)

◮ The first visit oriented evaluator is generated from a set of
total orders {TX}X∈VN

.

◮ A total order TX on Attr(X) fixes the order of evaluation on
Attr(X),

◮ Total orders for different non–terminals (nodes in the tree)
cannot be chosen independently, i.e., total orders at different
nodes may be incompatible,
X → Y
Inh(X) = Inh(Y) = {a, b},
Syn(X) = Syn(Y) = {c , d}
TX = a c b d ,TY = a d b c

Attribute Evaluation

◮ An evaluation order T (t) for a tree t induces at all nodes n
total orders Tn on attributes, if
for all a, b ∈ Attr(symb(n)) a Tn b ⇔ an T (t) bn ,

◮ Finding a set {TX}X∈VN
of total orders as induced by trees is

an NP–complete problem.

Attribute Evaluation

l–Ordered Attribute Grammars

AG is l–ordered (in l–ordered–AG) by a family of total orders
{TX}X∈VN

if

dynamic criterium: all trees t have an evaluation order T (t) which
induces TX at nodes labelled with X ,
i.e. the dynamic evaluator can evaluate the attribute
instances in all trees in the order given by the TX ,

static criterium: Dp(p)[Tp[0],Tp[1], . . . ,Tp[np]] is acyclic for all
productions p.

Testing for membership is as complex as constructing the total
orders, namely NP–complete.

Attribute Evaluation

Ordered Attribute Grammars

Subset of the l–ordered–AG.
Use a polynomial heuristics to compute total orders {TX}X∈VN

Step 1: Compute partial orders {RX}X∈VN
, the smallest relations

satisfying

aj Dp(p)[RX0
,RX1

, . . . ,RXnp
]+ bj ⇒ a RXj

b

starting with RX = IO (X) ∪ OI (X),
while changes do

1. Paste the RX to the local dependency graphs,

2. Check whether new edges result for a non–terminal,

3. Add these new edges to the RX .

This process terminates, since there are only finitely many
attributes.

Attribute Evaluation

Ordered Attribute Grammars cont’d

Step 2: Compute the total orders {TX } from the {RX } by
partitioning Attr(X) into an alternating sequence ι1σ1ι2σ2 . . . ιkσk

of sets of inherited and synthesized attributes such that

◮ ιj is (a total order on) the maximal set of the inherited
attributes which can be evaluated when the attributes in
ι1σ1ι2σ2 . . . ιj−1σj−1 are evaluated,

◮ σj is (a total order on) the maximal set of synthesized
attributes which can be evaluated when the attributes in the
ι1σ1ι2σ2 . . . ιj−1σj−1 are evaluated.

AG is ordered (is in ordered-AG),
if the relations {RX }X∈VN

are all acyclic, and
if for all productions p:
Dp(p)[TX0

,TX1
, . . . ,TXnp

] is acyclic,
where the {TX}X∈VN

are computed as described above.

Attribute Evaluation

Evaluator Generation for Ordered AGs

Given: total orders TX on Attr(X),

1. Split TX into an ordered partition of subsets of Attr(X) to be
evaluated during the same visit,

2. Local dependencies constrain how the visits at the
non–terminals in a production may follow each other:
From the ordered partitions of X0,X1, . . . ,Xnp and the local
dependency graph of p generate a visit sequence for p,

3. From the set of visit sequences generate a recursive visit
oriented evaluator rvE, a program performing the visits
recursively traversing the trees.

Attribute Evaluation

Ordered Partitions in the scopes–AG

Attr(Decls)= Attr(Decl)= {it-env, e-env, st-env, ok}
The (only possible) total order is:

it-env st-env e-env ok

Splitting it into visits:
1. downward visit it-env
1. upward visit st-env
2. downward visit e-env
2. upward visit ok

Ordered partition:
it-env st-env e-env ok
Attr(Stms) = Attr(Stm) = {e-env, ok}
Total order: e-env ok

Attribute Evaluation

Ordered Partitions in the scopes–AG cont’d

Splitting it into visits:
1. downward visit e-env
1. upward visit ok

Attribute Evaluation

Ordered Partitions

T total order on Attr(X) seen as a word over Attr(X).
An ordered partition for T is a dissection of T into a sequence
ι1σ1ι2σ2 . . . ιkσk where

◮ ιj ∈ Inh(X)∗, σj ∈ Syn(X)∗ for all 1 ≤ j ≤ k ,

◮ ιj 6= ε for all 1 < j ≤ k ,

◮ σj 6= ε for all 1 ≤ j < k

◮ ιj is the j -th downward visit,

◮ σj the j -th upward visit,

◮ ιjσj the j -th visit.

◮ upper indices on ι and σ are visit numbers.

◮ the conditions ιj 6= ε and σj 6= ε guarantee maximal length of
the substrings.

Attribute Evaluation

Visit Sequences for the Scopes-AG

2:

Decls

Stm

Stms

st-env

oke-env
Dp(2)[TStm, TDecls , TStms]

e-env it-env e-env okok

Attribute Evaluation

A visit to production 2

1. starts with a downward visit from Stm, then

2. visits the Decls–subtree the first time, then either
◮ visits the Decls–subtree the second time and

then the Stms–subtree, or
◮ visits the Stms–subtree and then

the Decls–subtree the second time,

3. returns to the parent.

Attribute Evaluation

Visit Sequences

Let Ti be a total order on Attr(Xi) such that
D = Dp(p)[T0,T1, . . . ,Tnp] is acyclic.

Let ι1j σ
1
j . . . ι

kj

j σ
kj

j be the ord. partitions of Tj .
A visit sequence for p and T0,T1, . . . ,Tnp is an evaluation order
for D of the following form:

V (p;T0,T1, . . . ,Tnp) = ι10δ
1σ1

0 ι20δ
2σ2

0 . . . ιk0δkσk
0

and δl is a sequence of visits ιmj σm
j at right side non–terminals Xj .

Thus, a visit sequence consists of a sequence of triples

1. a downward visit ιl0 to X0,

2. a sequence δl of visits Xj(1 ≤ j ≤ np), and

3. an upwards visit σl
0 to X0.

Attribute Evaluation

Algorithm Visit Sequence

Input: local dependency graph Dp(p),
total orders {Ti}0≤i≤np on {Attr(Xi)})0≤i≤np and
their ordered partitions.

Output: a visit sequence V (p;T0,T1, . . . ,Tnp)

Attribute Evaluation

Method: (1) construct a visit graph D̃ from
D = Dp(p)[T0,T1, . . . ,Tnp]

◮ its vertices are:
◮ ιrj σ

r
j (1 ≤ j ≤ np), ιrj σ

r
j is the r -th

visit of Xj (on the right side)
◮ σl

0
ιl+1

0
(1 ≤ l < k0) (visit at parent),

and
◮ ι1

0
und σk0

0
first downwards from

resp. last upwards visit to parent;

◮ there is an edge from x to y in D̃,
if there are attribute occurrences ai

in x and bj in y with ai D bj .

(2) Construct V (p;T0,T1, . . . ,Tnp) as an
evaluation order for D̃, starting with ι10
and ending with σk0

0 .

Attribute Evaluation

Executing Algorithm Visit Sequence

Stms.e-env

Stms.ok

Decls.e-env

Decls.it-ok

D̃ = Stm.e-env

Decls.it-env

Decls.st-env

Stm.ok

One visit sequence is:
Stms.e-env Decls.it-env Decls.st-env Decls.e-env Decls.ok
Stms.e-env Stms.ok Stm.ok

Attribute Evaluation

Recursive Visit Oriented Evaluator

◮ Evaluator as a program,

◮ Recursively traverses the trees,

◮ no. of visits to node n = length of ordered partition of
symb(n),

◮ At each production instance: executes the visits as indicated by
the visit sequence.

Attribute Evaluation

The recursive visit oriented evaluator, rvE

program rvE;
proc visit_1(n : node);

...
proc visit_i(n : node);
begin

case prod(n) of

.

..
p : Vi (p)

..

.
end case

end

...
begin

visit_1(ε)
end

Notation:

Vi (p) program fragment for the i–th visit at p.

Attribute Evaluation

Let ιi0ι
i1
j1
σi1

j1
. . . ι

il
jl
σ

il
jl
σi

0 describe the i-th visit.
The following case-component Vi(p) is constructed:

eval (ιnj1); visit_i1(nj1);
eval (ιnj2); visit_i2(nj2);

...
eval (ιnjl

); visit_il(njl);
eval (σi

0
)

Notation:

eval α is the sequence of semantic rules for the attribute occurrences in α.

Attribute Evaluation

rvE for the Scopes AG
program rvE_scopes;
proc visit_1(n : node);
begin

case prod(n) of

..

.
2 : begin

eval(it-envn1); visit_1(n1);
eval(e-envn1); visit_2(n1);
eval(e-envn2); visit_1(n2);
eval(okn);

end

4 : begin

eval(it-envn1); visit_1(n1);
eval(it-envn2); visit_1(n2);
eval(st-envn);

end

...
end case

end ;

Attribute Evaluation

proc visit_2(n : node);
begin

case prod(n) of

.

..
2 : begin

eval(e-envn1); visit_2(n1);
eval(e-envn2); visit_2(n2);
eval(okn);

end

...
end case

end ;
begin

visit_1(ε)
end .

Attribute Evaluation

The recursive visit oriented evaluator, rvE

program rvE;
proc visit_1(n : node);

..

.
proc visit_i(n : node);
begin

case vs(n) of

...
V (p; T0, T1, . . . , Tnp) : Vi (p; T0, T1, . . . , Tnp)

.

..
end case

end

...
begin

visit_1(ε)
end

Notation:

Vi (p) program fragment for the i–th visit at p.

Attribute Evaluation

Parser Directed Attribute Evaluation

Method:

◮ Parser actions trigger attribute evaluation,

◮ Attribute values on a stack,

◮ No tree built.

Restrictions:

◮ Only “one pass” dependencies,

◮ “Horizontal” dependencies must correspond to parsing
direction, i.e. no right-to-left dependencies,

◮ Inherited attributes and bottom up–parsing?

Attribute Evaluation

L–Attributed Grammars

◮ Parsers read/expand/reduce from left to right,

◮ Cannot trigger atttribute evaluation along right-to-left
dependencies,

Xi Xj Xnp

X0

X1

Right-to-Left Dependency

Attribute Evaluation

L–AG

◮ Superclass of all AGs with parser directed evaluation,

◮ Attributes can be evaluated in one left-to-right traversal of the
tree,

◮ S–AG allow only synthesized attributes
◮ subclass of L–AG,
◮ fits bottom up parsing, e.g. BISON

Attribute Evaluation

L–AG, Defining Evaluator

program L-AE;
proc visit (n : node)

case prod (n) of

..

.
p : begin

eval (Inh (X1)); visit (n1);
eval (Inh (X2)); visit (n2);
...
eval (Inh (Xnp)); visit (nnp);
eval (Syn (X0));

end ;
..
.

endcase
end ;
begin

visit(ε) (∗Start at root; inh. attr. of the root,

if existing, must have given values∗)
end .

Attribute Evaluation

L–AG Definition

dynamic criterium: all attributes instances must be evluable by the
defining interpreter,

static criterium: “no right-to-left dependencies”,
formally for each p : X0 → X1 . . . Xnp

and each semantic rule ai = fp,a,i(b
1
j1
, . . . , bk

jk
):

a ∈ Inh(Xi) and 1 ≤ i ≤ np, implies jl < i for all l
(1 ≤ l ≤ k),
inherited attributes on the right side may only depend
on

◮ inherited attributes of the left side and
◮ synthesized attributes on the right side occurring

“before” them.

Attribute Evaluation

Short-Circuit Evaluation of Boolean Expressions

The C language standard is very consequent about the order of
evaluation of expressions:

◮ the order is undefined for most operators

◮ the order is left-to-right for && , ||, and ,.

◮ evaluation of Boolean expressions formed with && , ||
terminates as soon as the value of the whole (sub-)expression
is determined, short-circuit evaluation.

The following attribute grammar describes optimal code generation
for short-circuit evaluation.

Attribute Evaluation

attribute grammar BoolExp

nonterminals IFSTAT, STATS, E, T, F;

attributes inh tsucc, fsucc with E,T,F domain string;
syn jcond with E,T,F domain bool;
syn code with IFSTAT, E,T,F domain string;

Attribute Evaluation

rules
IFSTAT → if E then STATS else STATS fi

E.tsucc = t
E.fsucc = e
IFSTAT.code = E.code ++ gencjump (not E.jcond, e) ++
t: ++ STATS1.code ++ genujump (f) ++ e: ++ STATS2.code ++ f:

E → T
E → E or T

E1.fsucc = t
E0.jcond = T.jcond
E0.code = E1.code ++ gencjump (E1.jcond, E0.tsucc) ++ t: ++ T.code T → F

T → T and F
T1.tsucc = f
T0.jcond = F.jcond
T0.code = T1.code ++ gencjump (not T1.jcond, T0.fsucc) ++ f: ++ F.code

F → (E)
F → not F

F1.tsucc = F0.fsucc
F1.fsucc = F0.tsucc
F0.jcond = not F1.jcond

F → id
F.jcond = true
F.code = LOAD id.identifier

AG BoolExp is in L–AG.

Attribute Evaluation

Parser Directed Evaluation

The necessary functions for attribute evaluation:

1. eval (Inh(X)) when starting to analyze a word for X ,
2. eval (Syn(X)) after finishing to analyze a word for X ,

i.e. when reducing to X ,
3. get(Syn(X)) when reading a terminal X .

Can be triggered by an LL–parser

1. upon expansion,

2. upon reduction,

3. upon reading.

An AG in L–AG is LL–AG if the underlying CFG is LL-grammar.
AG BoolExp is not in LL–AG, since the underlying CFG is left
recursive.

Attribute Evaluation

Implementation of LL–Attributed Grammars

For the assignment of stack addresses we list the sets Attr(X).

LInh(X) List of inherited attributes of X .
LSyn(X) List of synthesized attributes of X .

Two Stacks,

◮ Parse stack, PS,

◮ Attribute stack, AS.

Invariant(PS,AS):
Contents(PS) = [A1 → α1.β1] [A2 → α2.β2] . . . [An → αn.βn]
⇒ contents(AS) =
values(LInh(A1) LSyn(α1) LInh(A2) LSyn(α2) . . . LInh(An)
LSyn(αn))

Attribute Evaluation

Stack Situations

PS

AS

PS

PS

AS

AS

before after

before

before

after

after

[B → .γ]

Reduction by B → γ

Reading a terminal symbol a

Expansion of a non–terminal B

LInh(A)

LInh(A)

LInh(A)

[A → α.Bβ]

[A → α.aβ]

[A → α.Bβ] [A → α.Bβ]

LSyn(α) LInh(A) LSyn(α) LInh(B)

LSyn(α) LSyn(α)LInh(A) LSyn(a)

LInh(A) LSyn(α) LSyn(B)LSyn(γ)LInh(B)LSyn(α)

[A → αa.β]

[A → αB .β][B → γ.]

Attribute Evaluation

LR–Parser Directed Attribute Evaluation

◮ Calls to sematic rules triggered by reductions,

◮ Suffices for S–attributed grammars,

◮ For inherited attributes: Grammar transformation introduces
“trigger non–terminals”.

Trigger non–terminals N

◮ have one production N → ε,

◮ are inserted in right production sides before a non–terminal
with inherited attributes,

◮ this may change the grammar properties, e.g. LR(k),

◮ reduction to N triggers the evaluation of these attributes,

AG is LR–Attributed (is in LR–AG) if the underlying CFG of the
transformed AG is LR.
AG BoolExp is not LR–attributed, i.e. the transformation makes the
underlying CFG non–LR.

Attribute Evaluation

Local Dependencies in the Scopes-AG

Stms1:

Stms Stm

oke-env

2:

Decls

Stm

Stms

e-env ok

it-env st-env

4: Decls

Decls Decl

st-env okit-enve-env

5: Decl

Id StmsPtype

st-env oke-env it-env

6: Stm

Id Args

e-env ok

Attribute Evaluation

Generation Time – Evaluation Time

Gen. Time Eval. Time

tot. orders TX on Attr(X) tree t mit {Tn}n∈nodes (t)

for all X ∈ VN prod(n) = p, (T0,T1, . . . ,Tnp)
↓ ⇓

ordered partition for Attr(X) B(p;Tn0,Tn1, . . . ,Tnnp)
↓

visit sequences B(p;T0,T1, . . . ,Tnp)
:
:∨

for p ∈ P , Ti tot. order on Attr (p[i]) → rbA, recursive visit-
oriented evaluator

B → A stands for “ A computed from B at gen. time”,
A ⇒ B stands for “ A uniquely determines B ”,
A · · ·> B stands for “ A is used in B ”.

