
Attribute Dependencies

Attribute Dependencies

Wilhelm/Seidl/Hack: Compiler Design, Volume 2, Chapter 4 –
Reinhard Wilhelm

Universität des Saarlandes
wilhelm@cs.uni-saarland.de

Attribute Dependencies

Attribute Dependencies

Attribute dependencies

◮ relate attribute occurrences (instances),

◮ describe which attribute occurrences (instances) depend on
which other occurrences (instances),

◮ constrain the order of attribute evaluation,

◮ are input to evaluator generators.

Attribute Dependencies

Types of Dependencies

Local dependencies between attribute occurrences in a production
according to a semantic rule,

Individual dependency graph of attribute instances of a tree
obtained by pasting together local dependency graphs
of productions (instances)

Global dependencies between attributes of a non-terminal induced
by individual dependency graphs.

◮ An individual dependency graph may contain a cycle. Attribute
instances on this cycle can not be evaluated.

◮ AG is noncircular if none of its individual dependency graphs
contains a cycle.

Theorem

AG is well–formed iff it is noncircular.

Attribute Dependencies

Local Dependencies

◮ production local dependency relation

Dp(p) ⊆ O(p) × O(p):

bj Dp(p) ai iff ai = fp,a,i(. . . , bj , . . .)

◮ Attribute occurrence ai at Xi depends on bj at Xj iff bj is
argument in the semantic rule of ai .

◮ Representation of this relation by its directed graph, the
production local dependency graph, also denoted by Dp(p).

Attribute Dependencies

Local Dependencies in the Scopes-AG

Stms1:

Stms Stm

oke-env

2:

Decls

Stm

Stms

e-env ok

it-env st-env

4: Decls

Decls Decl

st-env okit-enve-env

5: Decl

Id StmsPtype

st-env oke-env it-env

6: Stm

Id Args

e-env ok

Attribute Dependencies

Individual Dependency Graph

Decls

Stm

Stms

Decl

Stm

Args

Id StmsPtype

Id Id

Stm

Id Args

Stm

Id Args

Decls Decl

StmsPtype

Attribute Dependencies

Individual Dependency Graphs

StmsPtype

Decls

Stm

Stms

Decl

Stm

Args

Id StmsPtype

Id Id

Stm

Id Args

Stm

Id Args

Decls Decl

Attribute Dependencies

A First Attribute Evaluator

Principle:

1. Topological sorting of the individual dependency graph of a
tree.

2. Attribute evaluation then done in the resulting order.

Topological sorting

◮ takes a partial order (an acyclic graph),

◮ produces a total order compatible with the partial order,

◮ i.e., resulting total order, an evaluation order.

Attribute Dependencies

Topological sorting

◮ Keeps a set of candidates to be inserted next into the total
order,
initialized with the minimal elements of the order,

◮ In each step
◮ Selects a candidate and inserts it into the total order,
◮ Removes it from the set of candidates,
◮ Removes it from the partial order,
◮ Makes all elements only depending on this candidate to

candidates,

◮ Until the set of candidates is empty.

◮ Partial order nonempty ⇒ graph acyclic.

Can serve as a dynamic test for well formedness.

Attribute Dependencies

Example Evaluation

Attribute Dependencies

Properties of this Evaluator

◮ Evaluation order determined at evaluation time, i.e. compile
time; therefore this evaluator is called the dynamic evaluator,

◮ Additional effort for the determination of the evaluation order
at evaluation time,

◮ “Data driven” strategy, i.e. the availability of its arguments
triggers the evaluation of an instance,

◮ Evaluates all instances in a tree,

◮ Evaluates each instance exactly once.

Attribute Dependencies

Alternatives

◮ Evaluation order may be fixed before evaluation time, e.g. by a
fixed evaluation “plan” for each production,

◮ “Demand driven” strategy
◮ Starts with a demand of some maximal elements in the partial

order,
◮ Demand for evaluation is passed to arguments,
◮ Computed values are passed back.

◮ Properties of the demand driven strategy:
◮ Allows the selective evaluation of a subset of “interesting”

attribute instances,
◮ Only instances needed for the evaluation of these attribute

instances are evaluated,
◮ May evaluate instances several times, depending on the

implementation, i.e. on whether computed values are stored.

Attribute Dependencies

Issues

◮ Separation into

Strategy phase: Evaluation order is determined,
Evaluation phase: Evaluation proper of the attribute instances

directed by this evaluation strategy.

◮ Goal: Preparation of the strategy phase at generation time,
i.e., evaluation orders, evaluation plans, etc. are precomputed
from the AG;
may include a static test for well formedness,

◮ Complexity of

Generation: Runtime in terms of AG size,
Evaluation: Size of evaluator, time optimality of evaluation.

◮ AG subclasses, hierarchy: Expressivity, Generation algorithms,
Complexity.

Attribute Dependencies

Lower Characteristic Graphs

Given t, tree with root label X

◮ “Projecting” the dependencies in Dt(t) onto the attributes of
X yields the lower characteristic graph of X induced by t,
Dt↑t(X).

◮ Dt↑t(X) contains an edge from a ∈ Inh(X) to b ∈ Syn(X) iff
there exists a path from the instance of a at the root to the
instance of b at the root in Dt(t).

X edcbaa b c d eX

Attribute Dependencies

Example: Lower Characteristic Graphs

Lower characteristic graphs induced by the previous individual
dependency graph:

Stm
e-env ok

Decls
st-env okit-enve-env

Stms
oke-env it-env ok

Decl
st-enve-env

Attribute Dependencies

Upper Characteristic Graphs
n inner node in t labeled X ,
regards the upper tree fragment of t at n, t\n,

◮ “Projecting” the dependencies in Dt(t\n) onto the attributes
of X yields the upper characteristic graph of X induced by

t, Dt↓t,n(X).

◮ Dt↓t,n(X) contains an edge from a ∈ Syn(X) to b ∈ Inh(X) iff
there exists a path from the instance of a at n to the instance
of b at n in Dt(t\n).

a b d eX c

cX edba

Attribute Dependencies

Example: Upper Characteristic Graphs

Upper characteristic graphs induced by the previous individual
dependency graph:

Stms
oke-env it-env ok

Decl
st-enve-env

Decls
st-env okit-enve-env

Stm
e-env ok

Attribute Dependencies

Strategic Information in Characteristic Graphs

it-env okst-enve-env
Decls

at the root of a subtree means:

it-env evaluated ⇒ st-env can be evaluated

e-env not evaluated ⇒ ok cannot be evaluated

during a downward visit.

it-env ok
Decl

st-enve-env

at the root of a subtree means:

st-env unevaluated ⇒ e-env cannot be evaluated during an upward
visit;

Attribute Dependencies

Induced Global Dependencies

The induction of characteristic graphs:

1. Local dependency graphs, Dp(p): Relation on attribute
occurrences of p

Type conversion + Pasting

2. Individual dependency graph, Dt(t): Relation on attribute
instances in t

Transitive closure and restriction

3. Relation on attribute instances of node n with sym(n) = X

Type conversion

4. Lower characteristic graph Dt↑t(X) ⊆ Inh(X) × Syn(X):
Relation on attributes of X or

5. Upper characteristic graph Dt↓t,n(X) ⊆ Syn(X) × Inh(X):
Relation on attributes of X .

Attribute Dependencies

Computation of Global Dependency Graphs

◮ So far, the characteristic graph induced by one tree
(fragment).

◮ Nonterminal X has
◮ a set, Dt↑(X), of lower characteristic graphs and
◮ a set, Dt↓(X), of upper characteristic graphs.

◮ These sets are computed at generation time by GFA.

◮ Only non–terminals can contribute,
i.e., for p : X0 → X1 . . . Xnp this means Xi ∈ VN for all
1 ≤ i ≤ np ..

◮ Watch out for “typing problems”!

Attribute Dependencies

Formalization of “Pasting”

R0,R1, . . . ,Rnp relations on the sets
Attr(X0),Attr(X1), . . ., Attr(Xnp), resp.
The pasting operation Dp(p)[·] has functionality
Attr(X0)

2 × Attr(X1)
2 × . . . × Attr(Xnp)

2 → O(p) × O(p).
Dp(p)[R0 ,R1, . . . ,Rnp] is the following relation on O(p):

Dp(p) ∪ R0
0 ∪ R1

1 ∪ . . . ∪ R
np
np ,

where bi R i
i ai iff b Ri a.

The relations on the attributes of X0,X1, . . . ,Xnp are regarded as
relations on attribute occurrences and unioned.
We write Dp(p)[∅,R1, . . . ,Rnp] as Dp(p)[R1, . . . ,Rnp].

Attribute Dependencies

Formalization of Upward “Projection”

Upward projection R↑(p)[·] has functionality:
Attr(X1)

2 × . . . × Attr(Xnp)
2 → Inh(X0) × Syn(X0).

R↑(p)[R1, . . . ,Rn] is the following relation:

b R↑(p)[R1, . . . ,Rn] a iff b0 Dp(p)[R1 , . . . ,Rn]
+ a0.

Attribute Dependencies

Formalization of Downward “Projection”

Downward projection R↓i(p)[·] has functionality:
Attr(X0)

2 × Attr(X1)
2 × . . . × Attr(Xnp)

2 → Syn(Xi) × Inh(Xi)
R↓i(p)[R0,R1, . . . ,Rnp] is defined by

b R↓i(p)[R0,R1, . . . ,Rnp] a iff

bi Dp(p)[R0,R1, . . . ,Ri−1, ∅,Ri+1, . . . ,Rnp]
+ ai

Attribute Dependencies

Extensions to Sets of Relations

Let R1, . . . ,Rnp be sets of relations on Attr(X1), . . . ,Attr(Xnp),
resp.

R↑(p)[R1, . . . ,Rnp] = {R↑(p)[R1, . . . , Rnp] | Ri ∈ Ri , (1 ≤ i ≤ np)} and

R↓i(p)[R0,R1, . . . ,Rnp] = {R↓i(p)[R0,R1, . . . , Rnp] | Rj ∈ Rj (0 ≤ j ≤ np)}

for all i in (1 ≤ i ≤ np).

Attribute Dependencies

GFA: Lower Characteristic Graphs

Evaluation time:

How to compute Dt↑t(X0) for a tree t with root label X0 and
prod(ε) = p : X0 → X1 . . . Xnp?
Let the relations Dt↑t/1(X1), . . . ,Dt↑t/np

(Xnp) be already
computed.

.

. .

Xi
Xnp

X0

X1

Compute Dt↑t(X0) locally as

Dt↑t(X0) = R↑(p)[Dt↑t/1(X1), . . . ,Dt↑t/np
(Xnp)]

Attribute Dependencies

GFA: Lower Characteristic Graphs cont’d

This suggests for the generation time:

Dt↑(X) =
⋃

p : p[0] = X
R↑(p)[Dt↑(p[1]), . . . ,Dt↑(p[np])]

Least fixpoint is the set of the sets of lower characteristic graphs.

Attribute Dependencies

GFA–Problem Lower Characteristic Graphs

One step in the fixpoint iteration for production p:

1. Paste all combinations of lower characteristic graphs onto
Dp(p),

2. Project the resulting graphs onto the attributes of X0,

3. Form the union all the resulting sets for X0.

bottom up-GFA-Problem lower characteristic graphs

lattices {D(X) = P(P(Inh(X) × Syn(X)))}X∈VN

part. order ⊆ (subset inclusion on sets of relations)
bottom ∅ (empty set of relations)
transf. fct. {Lcp : D(p[1]) × . . . × D(p[np]) → D(p[0]) |

Lcp(R1, . . . ,Rnp) = R↑(p)[R1, . . . ,Rnp] }p∈P

comb. fct. ∪ (union on sets of relations)

Attribute Dependencies

A Static Non–circularity Test

◮ A lower char. graph represents all dependencies in the trees
inducing it.

◮ Pasting all combinations of lower char. graphs onto local dep.
graphs produces a cyclic graph if AG is circular.
Hence:

◮ AG is noncircular iff
all graphs in Dp(p)[Dt↑(X1), . . . ,Dt↑(Xnp)] for all productions
p are noncyclic.

◮ |
⋃

X Dt↑(X)| exponential in |Attr |.

◮ The non–circularity test is exponential.

Attribute Dependencies

GFA: Upper Characteristic Graphs

Compile time:

Regard p applied at node n in t.
Already computed
Dt↓t,n(X0) and Dt↑t/n1(X1), . . . ,Dt↑t/nnp

(Xnp).

.

. .

Xi
Xnp

X0

X1

Compute Dt↓t,ni (Xi) (1 ≤ i ≤ np) using the operation R↓i(p)[. . .].

Attribute Dependencies

GFA: Upper Characteristic Graphs cont’d

This suggests for generation time:

Dt↓(S) = {∅}

Dt↓(X) =
⋃

p[i] = X
R↓i(p)[Dt↓(p[0]),Dt↑(p[1]), . . . ,Dt↑(p[np])]

Least fixpoint is the set of the sets of upper characteristic graphs.

Attribute Dependencies

GFA–Problem Upper Characteristic Graphs

top down-GFA-problem upper characteristic graphs
Lattices {D(X) = P(P(Syn(X) × Inh(X)))}X∈VN

part. order ⊆ (subset inclusion on sets of relations)
bottom ∅
transf. fct. {Ucp,i : D(p[0]) → D(p[i])

Ucp,i (R) = R↓i(p)[R, Dt↑(p[1]), . . . , Dt↑(p[np])] }p∈P,1≤i≤np

comb. fct. ∪ (union on sets of relations)

◮ The sets of lower characteristic graphs are assumed to be
computed before.

◮ They are constant parts of the functions Ucp,i .

Attribute Dependencies

Resumee Characteristic Graphs

Characteristic graphs are:

Exact: For each characteristic graph there is at least one tree
(fragment), whose individual dependency graph
induces it,

Costly: There may be exponentially many of them.

Attribute Dependencies

Approximative Attribute Dependencies

What is the “strategic” interpretation of edges in (lower)
characteristic graphs?

n

•

fedcba

Evaluator visits subtree at n with b, c evaluated.
Through this visit, it can

◮ evaluate d and e,

◮ not evaluate f .

Attribute Dependencies

What does “approximation” mean? deleting edges? adding edges?
Deleting the edge from a to f :

n

•

fedcba

◮ Evaluator assumes, f can be evaluated when value of b is
known.

◮ Makes a fruitless visit to the subtree at n.

◮ Inefficient strategy!

Attribute Dependencies

Adding edges from a to d and e:

n

•

fedcba

◮ Evaluator would not visit the subtree at n with evaluated b

and c and unevaluated a,

◮ Evaluator would only visit the subtree, when also the value of
a is known.

◮ Visits may be delayed.

Attribute Dependencies

Resumee:

◮ Reduced dependency graphs may cause fruitless visits,

◮ Augmented dependency graphs may delay visits,

◮ Added edges may introduce cycles (cause an infinite delay).

Attribute Dependencies

I/O–Graphs

◮ Are an upper bound on the lower dependencies,

◮ There may be I/O–graphs with no corresponding tree,

◮ There is one graph per nonterminal.

bottom up-GFA-problem I/O-graphs

lattices {D(X) = P(Inh(X) × Syn(X))}X∈VN

part. order ⊆ (subset inclusion on relations)
bottom ∅
transf. fct. {Io : D(p[1]) × . . . × D(p[np]) → D(p[0]) |

Io(g1, . . . , gnp) = R↑(p)[g1, . . . , gnp] }p∈P

comb. fct. ∪ (union on relations)
Yields the system of equations:
IO(X) =

⋃

p : p[0] = X
R↑(p)[IO(p[1]), . . . , IO(p[np])]

AG is absolutely noncircular if for all productions p the graph
Dp(p)[IO(p[1]), . . . , IO(p[np])] is acyclic.

Attribute Dependencies

A Noncircular, but not Absolutely Noncircular AG
2: 3:1:

YY

a b

X

Y

Its only two trees have no cyclic dependencies.

YY

a b

X X

For computing IO(X) Dp(2) and Dp(3) are unioned and inserted in
Dp(1) producing a cycle.

Y

a

X

