Attribute Dependencies

Wilhelm/Seidl/Hack: Compiler Design, Volume 2, Chapter 4 – Reinhard Wilhelm Universität des Saarlandes wilhelm@cs.uni-saarland.de

Attribute Dependencies

Attribute dependencies

- relate attribute occurrences (instances),
- describe which attribute occurrences (instances) depend on which other occurrences (instances),

・ロト ・ 日 ・ モー・ ・ 田 ・ うへの

- constrain the order of attribute evaluation,
- are input to evaluator generators.

Types of Dependencies

- Local dependencies between attribute occurrences in a production according to a semantic rule,
- Individual dependency graph of attribute instances of a tree obtained by pasting together local dependency graphs of productions (instances)
- Global dependencies between attributes of a non-terminal induced by individual dependency graphs.
 - An individual dependency graph may contain a cycle. Attribute instances on this cycle can not be evaluated.
 - AG is noncircular if none of its individual dependency graphs contains a cycle.

Theorem

AG is well-formed iff it is noncircular.

Local Dependencies

▶ production local dependency relation Dp(p) ⊆ O(p) × O(p):

$$b_j Dp(p) a_i$$
 iff $a_i = f_{p,a,i}(\ldots, b_j, \ldots)$

- Attribute occurrence a_i at X_i depends on b_j at X_j iff b_j is argument in the semantic rule of a_i.
- Representation of this relation by its directed graph, the production local dependency graph, also denoted by Dp(p).

Local Dependencies in the Scopes-AG

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Individual Dependency Graph

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

Individual Dependency Graphs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

A First Attribute Evaluator

Principle:

- 1. Topological sorting of the individual dependency graph of a tree.
- 2. Attribute evaluation then done in the resulting order.

Topological sorting

- takes a partial order (an acyclic graph),
- produces a total order compatible with the partial order,

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

• i.e., resulting total order, an evaluation order.

Topological sorting

 Keeps a set of candidates to be inserted next into the total order,

initialized with the minimal elements of the order,

- In each step
 - Selects a candidate and inserts it into the total order,
 - Removes it from the set of candidates,
 - Removes it from the partial order,
 - Makes all elements only depending on this candidate to candidates,
- Until the set of candidates is empty.
- Partial order nonempty \Rightarrow graph acyclic.

Can serve as a *dynamic* test for well formedness.

Example Evaluation

Properties of this Evaluator

- Evaluation order determined at evaluation time, i.e. compile time; therefore this evaluator is called the dynamic evaluator,
- Additional effort for the determination of the evaluation order at evaluation time,

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

- "Data driven" strategy, i.e. the availability of its arguments triggers the evaluation of an instance,
- Evaluates all instances in a tree,
- Evaluates each instance exactly once.

Alternatives

- Evaluation order may be fixed before evaluation time, e.g. by a fixed evaluation "plan" for each production,
- "Demand driven" strategy
 - Starts with a demand of some *maximal* elements in the partial order,
 - Demand for evaluation is passed to arguments,
 - Computed values are passed back.
- Properties of the demand driven strategy:
 - Allows the selective evaluation of a subset of "interesting" attribute instances,
 - Only instances needed for the evaluation of these attribute instances are evaluated,
 - May evaluate instances several times, depending on the implementation, i.e. on whether computed values are stored.

Issues

Separation into

Strategy phase: Evaluation order is determined, Evaluation phase: Evaluation proper of the attribute instances directed by this evaluation strategy.

 Goal: Preparation of the strategy phase at generation time, i.e., evaluation orders, evaluation plans, etc. are precomputed from the AG;

may include a static test for well formedness,

Complexity of

Generation: Runtime in terms of AG size, Evaluation: Size of evaluator, time optimality of evaluation.

 AG subclasses, hierarchy: Expressivity, Generation algorithms, Complexity.

Lower Characteristic Graphs

Given t, tree with root label X

- "Projecting" the dependencies in Dt(t) onto the attributes of X yields the lower characteristic graph of X induced by t, Dt↑t(X).
- Dt↑_t(X) contains an edge from a ∈ Inh(X) to b ∈ Syn(X) iff there exists a path from the instance of a at the root to the instance of b at the root in Dt(t).

・ロト ・ 日 ・ モー・ ・ 田 ・ うへの

Example: Lower Characteristic Graphs

Lower characteristic graphs induced by the previous individual dependency graph:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

Upper Characteristic Graphs

n inner node in *t* labeled *X*, regards the upper tree fragment of *t* at *n*, $t \setminus n$,

- "Projecting" the dependencies in Dt(t\n) onto the attributes of X yields the upper characteristic graph of X induced by t, Dt↓_{t,n}(X).
- Dt↓_{t,n}(X) contains an edge from a ∈ Syn(X) to b ∈ Inh(X) iff there exists a path from the instance of a at n to the instance of b at n in Dt(t\n).

(日) (中) (日) (日) (日) (日) (日)

Example: Upper Characteristic Graphs

Upper characteristic graphs induced by the previous individual dependency graph:

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Strategic Information in Characteristic Graphs

e-env it-env st-env ok

at the root of a subtree means:

it-env evaluated \Rightarrow st-env can be evaluated

e-env not evaluated \Rightarrow ok cannot be evaluated

during a downward visit.

() e^{-env} itenv ok \square $\square Deel \square$ \square at the root of a subtree means:

st-env unevaluated \Rightarrow e-env cannot be evaluated during an upward visit;

Induced Global Dependencies

The induction of characteristic graphs:

- Local dependency graphs, Dp(p): Relation on attribute occurrences of p Type conversion + Pasting
- Individual dependency graph, Dt(t): Relation on attribute instances in t Transitive closure and restriction
- Relation on attribute instances of node n with sym(n) = X Type conversion
- 4. Lower characteristic graph $Dt\uparrow_t(X) \subseteq Inh(X) \times Syn(X)$: Relation on **attributes** of X or
- 5. Upper characteristic graph $Dt\downarrow_{t,n}(X) \subseteq Syn(X) \times Inh(X)$: Relation on **attributes** of X.

Computation of Global Dependency Graphs

- So far, the characteristic graph induced by one tree (fragment).
- Nonterminal X has
 - a set, $Dt\uparrow(X)$, of lower characteristic graphs and
 - a set, $Dt \downarrow (X)$, of upper characteristic graphs.
- These sets are computed at generation time by GFA.
- Only non-terminals can contribute, i.e., for $p: X_0 \rightarrow X_1 \dots X_{n_p}$ this means $X_i \in V_N$ for all $1 \le i \le n_p$.

(日) (中) (日) (日) (日) (日) (日)

Watch out for "typing problems"!

Formalization of "Pasting"

 $R_0, R_1, \ldots, R_{n_p}$ relations on the sets $Attr(X_0), Attr(X_1), \ldots, Attr(X_{n_p})$, resp. The pasting operation $Dp(p)[\cdot]$ has functionality $Attr(X_0)^2 \times Attr(X_1)^2 \times \ldots \times Attr(X_{n_p})^2 \rightarrow O(p) \times O(p)$. $Dp(p)[R_0, R_1, \ldots, R_{n_p}]$ is the following relation on O(p):

$$Dp(p) \cup R_0^0 \cup R_1^1 \cup \ldots \cup R_{n_p}^{n_p}$$

where $b_i R_i^i a_i$ iff $b R_i a$.

The relations on the attributes of $X_0, X_1, \ldots, X_{n_p}$ are regarded as relations on attribute occurrences and unioned. We write $Dp(p)[\emptyset, R_1, \ldots, R_{n_p}]$ as $Dp(p)[R_1, \ldots, R_{n_p}]$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

Formalization of Upward "Projection"

Upward projection $R^{\uparrow}(p)[\cdot]$ has functionality: $Attr(X_1)^2 \times \ldots \times Attr(X_{n_p})^2 \rightarrow Inh(X_0) \times Syn(X_0).$ $R^{\uparrow}(p)[R_1, \ldots, R_n]$ is the following relation:

 $b R^{\uparrow}(p)[R_1,...,R_n] a \text{ iff } b_0 Dp(p)[R_1,...,R_n]^+ a_0.$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

Formalization of Downward "Projection"

Downward projection $R \downarrow_i(p)[\cdot]$ has functionality: $Attr(X_0)^2 \times Attr(X_1)^2 \times \ldots \times Attr(X_{n_p})^2 \rightarrow Syn(X_i) \times Inh(X_i)$ $R \downarrow_i(p)[R_0, R_1, \ldots, R_{n_p}]$ is defined by $b \ R \downarrow_i(p)[R_0, R_1, \ldots, R_{n_p}] a$ iff

(日) (中) (日) (日) (日) (日) (日)

 $b_i Dp(p)[R_0, R_1, \ldots, R_{i-1}, \emptyset, R_{i+1}, \ldots, R_{n_p}]^+ a_i$

Extensions to Sets of Relations

Let $\mathcal{R}_1, \ldots, \mathcal{R}_{n_p}$ be sets of relations on $Attr(X_1), \ldots, Attr(X_{n_p})$, resp.

$$\begin{array}{lll} R\uparrow(p)[\mathcal{R}_1,\ldots,\mathcal{R}_{n_p}] &=& \{R\uparrow(p)[\mathcal{R}_1,\ldots,\mathcal{R}_{n_p}] \mid \mathcal{R}_i\in\mathcal{R}_i, (1\leq i\leq n_p)\} \text{ and} \\ R\downarrow_i(p)[\mathcal{R}_0,\mathcal{R}_1,\ldots,\mathcal{R}_{n_p}] &=& \{R\downarrow_i(p)[\mathcal{R}_0,\mathcal{R}_1,\ldots,\mathcal{R}_{n_p}] \mid \mathcal{R}_j\in\mathcal{R}_j \ (0\leq j\leq n_p)\} \\ & \quad \text{for all } i \text{ in } (1\leq i\leq n_p). \end{array}$$

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

GFA: Lower Characteristic Graphs

Evaluation time:

How to compute $Dt\uparrow_t(X_0)$ for a tree t with root label X_0 and $prod(\varepsilon) = p : X_0 \to X_1 \dots X_{n_p}$? Let the relations $Dt\uparrow_{t/1}(X_1), \dots, Dt\uparrow_{t/n_p}(X_{n_p})$ be already computed.

Compute $Dt\uparrow_t(X_0)$ locally as

$$Dt\uparrow_t(X_0) = R\uparrow(p)[Dt\uparrow_{t/1}(X_1),\ldots,Dt\uparrow_{t/n_p}(X_{n_p})]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

GFA: Lower Characteristic Graphs cont'd

This suggests for the **generation time**: $Dt\uparrow(X) = \bigcup_{p:\ p[0] = X} R\uparrow(p)[Dt\uparrow(p[1]), \dots, Dt\uparrow(p[n_p])]$ Least fixpoint is the set of the sets of lower characteristic graphs.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

GFA-Problem Lower Characteristic Graphs

One step in the fixpoint iteration for production *p*:

- Paste all combinations of lower characteristic graphs onto Dp(p),
- 2. Project the resulting graphs onto the attributes of X_0 ,
- 3. Form the union all the resulting sets for X_0 .

bottom up-GFA-Problem	lower	characteristic	graphs
-----------------------	-------	----------------	--------

lattices	${D(X) = \mathcal{P}(\mathcal{P}(Inh(X) \times Syn(X)))}_{X \in V_N}$
part. order	\subseteq (subset inclusion on sets of relations)
bottom	\emptyset (empty set of relations)
transf. fct.	$\{Lc_p: D(p[1]) \times \ldots \times D(p[n_p]) \to D(p[0]) \mid$
	$Lc_{p}(\mathcal{R}_{1},\ldots,\mathcal{R}_{n_{p}})=R^{\uparrow}(p)[\mathcal{R}_{1},\ldots,\mathcal{R}_{n_{p}}]\}_{p\in\mathcal{P}}$
comb. fct.	\cup (union on sets of relations)

A Static Non-circularity Test

- A lower char. graph represents all dependencies in the trees inducing it.
- Pasting all combinations of lower char. graphs onto local dep. graphs produces a cyclic graph if AG is circular. Hence:
- ► AG is noncircular iff all graphs in Dp(p)[Dt↑(X₁),...,Dt↑(X_{n_p})] for all productions p are noncyclic.
- ▶ $|\bigcup_X Dt\uparrow(X)|$ exponential in |Attr|.
- ► The non-circularity test is exponential.

GFA: Upper Characteristic Graphs

Compile time: Regard p applied at node n in t. Already computed $Dt\downarrow_{t,n}(X_0)$ and $Dt\uparrow_{t/n1}(X_1), \ldots, Dt\uparrow_{t/nn_p}(X_{n_p}).$

Compute $Dt \downarrow_{t,ni}(X_i)$ $(1 \le i \le n_p)$ using the operation $R \downarrow_i(p)[\ldots]$.

(日) (圖) (臣) (臣)

э

GFA: Upper Characteristic Graphs cont'd

This suggests for generation time: $Dt \downarrow (S) = \{\emptyset\}$ $Dt \downarrow (X) = \bigcup_{p[i] = X} R \downarrow_i(p)[Dt \downarrow (p[0]), Dt \uparrow (p[1]), \dots, Dt \uparrow (p[n_p])]$ Least fixpoint is the set of the sets of upper characteristic graphs.

GFA-Problem Upper Characteristic Graphs

top down-GFA-problem upper characteristic graphs Lattices $\{D(X) = \mathcal{P}(\mathcal{P}(Syn(X) \times Inh(X)))\}_{X \in V_N}$ part. order \subseteq (subset inclusion on sets of relations) bottom \emptyset transf. fct. $\{Uc_{p,i} : D(p[0]) \rightarrow D(p[i])$ $Uc_{p,i}(\mathcal{R}) = R \downarrow_i(p)[\mathcal{R}, Dt^{\uparrow}(p[1]), \dots, Dt^{\uparrow}(p[n_p])]\}_{p \in \mathcal{P}, 1 \leq i \leq n_p}$ comb. fct. \cup (union on sets of relations)

 The sets of lower characteristic graphs are assumed to be computed before.

(日) (中) (日) (日) (日) (日) (日)

• They are constant parts of the functions $Uc_{p,i}$.

Resumee Characteristic Graphs

Characteristic graphs are:

Exact: For each characteristic graph there is at least one tree (fragment), whose individual dependency graph induces it,

・ロト ・ 日 ・ モート ・ 田 ・ うへの

Costly: There may be exponentially many of them.

Approximative Attribute Dependencies

What is the "strategic" interpretation of edges in (lower) characteristic graphs?

Evaluator visits subtree at n with b, c evaluated.

Through this visit, it can

- evaluate d and e,
- not evaluate f.

What does "approximation" mean? deleting edges? adding edges? Deleting the edge from a to f:

Evaluator assumes, f can be evaluated when value of b is known.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- Makes a fruitless visit to the subtree at n.
- Inefficient strategy!

Adding edges from *a* to *d* and *e*:

- Evaluator would not visit the subtree at n with evaluated b and c and unevaluated a,
- Evaluator would only visit the subtree, when also the value of a is known.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Visits may be delayed.

Resumee:

- Reduced dependency graphs may cause fruitless visits,
- Augmented dependency graphs may delay visits,
- Added edges may introduce cycles (cause an infinite delay).

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

I/O–Graphs

- Are an upper bound on the lower dependencies,
- There may be I/O-graphs with no corresponding tree,
- There is one graph per nonterminal.

bottom up-GFA-problem I/O-graphs $\{D(X) = \mathcal{P}(Inh(X) \times Syn(X))\}_{X \in V_{N}}$ lattices part. order \subseteq (subset inclusion on relations) bottom transf. fct. { $lo: D(p[1]) \times \ldots \times D(p[n_p]) \rightarrow D(p[0])$ | $lo(g_1,\ldots,g_{n_p})=R\uparrow(p)[g_1,\ldots,g_{n_p}]\}_{p\in\mathcal{P}}$ comb. fct. \cup (union on relations) Yields the system of equations: $IO(X) = \bigcup_{p:p[0] = X} R^{\uparrow}(p)[IO(p[1]), \dots, IO(p[n_p])]$ AG is **absolutely noncircular** if for all productions *p* the graph $Dp(p)[IO(p[1]), \ldots, IO(p[n_p])]$ is acyclic. A Noncircular, but not Absolutely Noncircular AG

Its only two trees have no cyclic dependencies.

For computing IO(X) Dp(2) and Dp(3) are unioned and inserted in Dp(1) producing a cycle.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

