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Attribute Grammars

Attribute Grammars

Attributes: containers for static semantic (non-context–free
syntactic) information,

Directions: attributes

inherit information from the (upper) context,
synthesize information from information in

subtrees,

Semantic rules: define computation of attribute values.
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Attributes as Carriers of Context Information
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Example Grammar: Scoping
Describes nested scopes;

◮ a statement may be a block, consisting of a declaration aprt
followed by a statement part,

◮ declaration parts consist of lists of procedure declarations,
◮ procedures, declared later in a list, may be called from within

procedures declared earlier.

attribute grammar Scopes:

nonterminals Stms, Stm, Decls, Decl, Id, Args, Ptype;

domain Env = String → Types;

attributes syn ok with Decls, Decl, Stms, Stm domain Bool;

inh e-env with Stms, Stm, Decls, Decl domain Env;

inh it-env with Decls, Decl domain Env;

syn st-env with Decls, Decl domain Env;

syn name with Id domain String;

syn type with Ptype, Args domain Types;
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ok is true,

◮ if all used identifiers are declared, and
◮ if there are no multiple declarations of one

identifier in the same scope.

it-env, st-env are “temporary environments”, in which declarative
information is collected.
A check for double declarations is made while
collecting local declarations in it-env.

e-env is the “effective” environment, in which procedure
calls are type checked.
For each nested scope, the effective environment is
obtained by over-writing the external effective
environment with the locally constructed
environment.
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rules

0 : Stms → Stm
1 : Stms → Stms ; Stm

Stms0.ok = Stms1.ok and Stm.ok
2 : Stm → begin Decls ; Stms end

Decls.it-env = ∅

Stms.e-env = Stm.e-env + Decls.st-env
Decls.e-env = Stm.e-env + Decls.st-env
Stm.ok = Decls.ok and Stms.ok

3 : Decls → Decl
4 : Decls → Decls ; Decl

Decls1.it-env = Decls0.it-env
Decl.it-env = Decls1.st-env
Decls0.st-env = Decl.st-env
Decls0.ok = Decls1.ok and Decl.ok

5 : Decl → proc Id : Ptype is Stms
Decl.st-env = Decl.it-env + { Id.name 7→ Ptype.type }
Stms.e-env = Decl.e-env
Decl.ok = undef( Id.name, Decl.it-env) and Stms.ok

6 : Stm → call Id ( Args)
Stm.ok = def(Id.name, Stm.e-env) and

check(Args.type, Stm.e-env(Id.name))
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Local Dependencies in the Scopes-AG
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Attribute Grammars – Terminology

Let G = (VN ,VT ,P ,S) be a CFG, the underlying CFG.
The p−th production in P is written as
p : X0 → X1 . . . Xnp ,
Xi ∈ VN ∪ VT , 1 ≤ i ≤ np , X0 ∈ VN .
An attribute grammar (AG) over G consists of

◮ two disjoint sets Inh and Syn of inherited resp. synthesized
attributes,

◮ an association of two sets Inh(X ) ⊆ Inh and Syn(X ) ⊆ Syn
with each symbol in VN ∪ VT ;

◮ Attr(X ) = Inh(X )∪ Syn(X ) set of all attributes of X ;
◮ a ∈ Attr(Xi ) has an occurrence in production p at occurrence

Xi , written ai .
◮ O(p) is the set of all attribute occurrences in production p.
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Attribute Grammars – Terminology cont’d

◮ the association of a domain Da with each attribute a;

◮ a semantic rule

ai = fp,a,i ( b1
j1 , . . . , b

k
jk

) (0 ≤ jl ≤ np) (1 ≤ l ≤ k)

for each defining occurrence of an attribute, i.e.,
◮ a ∈ Inh(Xi ) for 1 ≤ i ≤ np or
◮ a ∈ Syn(X0) in each production p,

where bl
jl
∈ Attr(Xjl ) (0 ≤ jl ≤ np) (1 ≤ l ≤ k).

fp,a,i is thus a function from Db1 × . . . × Dbk to Da.
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Attributes as Carriers of Context Information
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More Terminology

◮ Productions of the underlying CFG have instances in syntax
trees.

◮ Node n labelled with X ∈ VN ∪ VT has an instance an of
attribute a ∈ Attr(X ).

◮ Hence, there are

attributes associated with non-terminals (and terminals),
attribute occurrences in productions, and
attribute instances at nodes of syntax trees.

◮ The semantic rule for a def. attribute occurrence in a
production determines the values of all corresponding attribute
instances in instances of the production.

◮ Attribute Evaluation is the process of computing the values
of attribute instances in a tree using the semantic rules.
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Attribute Occurrences and Attribute Instances
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The p–n–q Situation

Attribute evaluation at node n labelled X is determined by
productions

p applied at parent(n) for the inherited attributes of X
and

q applied at n for the synthesized attributes of X .

X
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Semantics of an Attribute Grammar
Let t be a syntax tree to AG G , symb(n) ∈ VN , prod(n) be the
production applied at n.
Attribute instance an of attribute a ∈ Attr(symb(n)) at n has to be
given a value from Da.
Semantic rule ai = fp,a,i ( b1

j1
, . . . , bk

jk
) of prod(n) = p induces the

relation on the values of the attribute instances of the instance of
prod(n):

val (ani ) = fp,a,i (val (b
1
nj1), . . . , val (b

k
njk

))

G induces a system of equations for t:
◮ variables are the attribute instances at the nodes of t,
◮ equations are defined by the above relation,
◮ recursion would in general not permit an evaluation of all

attribute instances.
◮ AG, which never induces a recursive system of equations, is

called well formed.
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Normal Form

◮ Attribute occurrences ai where a ∈ Inh(Xi ) and 1 ≤ i ≤ np

or a ∈ Syn(X0) are defining occurrences.

◮ All others are applied occurrences.

◮ AG is in normal form, if all arguments of semantic functions
are applied occurrences.

Consequences of Normal Form:

◮ Semantic rules define values of def. occurrences in terms of
appl. occurrences.

◮ Computation of the value of an attribute in one instance of a
production (in a tree) requires the previous evaluation of an
attribute in a neigbouring instance of a production.

◮ For later: Chains of attribute dependences inside a production
have at most length one.
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Short Circuit Evaluation of Boolean Expressions

The generated code:

◮ only load–instructions and conditional jumps;

◮ no instructions for and, or and not;

◮ subexpressions evaluated from left to right;

◮ for each (sub)expression, only the smallest subexpression is
evaluated, which determines the value of the whole
(sub)expression.
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Code for the Boolean expression (a and b) or not c :

LOAD a
JUMPF L1 jump-on-false
LOAD b
JUMPT L2 jump-on-true

L1: LOAD c
JUMPT L3

L2: Code for true–successor
L3: Code for false–successor
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Attribute grammar BoolExp describes

◮ code generation for short circuit evaluation,

◮ label generation for subexpressions,

◮ transport of labels for true– and false–successors to primitive
subexpressions translated into jumps.
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Synthesized attribute jcond computes the correlation of the values
of an expression with that of its rightmost identifier x .
Value of jcond at expression e

true: The loaded value of x equals value of e,

false: The loaded value of x is negation of value of e.

Means for code generation:
Instruction following LOAD x is conditional jump to true–successor

JUMPT if jcond =true,

JUMPF if jcond =false.
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attribute grammar BoolExp

nonterminals IFSTAT, STATS, E, T, F;

attributes inh tsucc, fsucc with E,T,F domain string;
syn jcond with E,T,F domain bool;
syn code with IFSTAT, E,T,F domain string;
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rules

IFSTAT → if E then STATS else STATS fi

E.tsucc = t

E.fsucc = e

IFSTAT.code = E.code ++ gencjump (not E.jcond, e) ++
t: ++ STATS1.code ++ genujump (f ) ++ e: ++ STATS2.code ++ f:

E → T

E → E or T

E1.fsucc = t

E0.jcond = T.jcond

E0.code = E1.code ++ gencjump (E1.jcond, E0.tsucc ) ++ t: ++ T.code

T → F

T → T and F

T1.tsucc = f

T0.jcond = F.jcond

T0.code = T1.code ++ gencjump (not T1.jcond, T0.fsucc ) ++ f: ++ F.code

F → (E)

F → not F

F1.tsucc = F0.fsucc

F1.fsucc = F0.tsucc

F0.jcond = not F1.jcond

F → id

F.jcond = true

F.code = LOAD id.identifier
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Auxilliary functions:

genujump (l) = JUMP l
gencjump ( jc, l) = if jc = true

then JUMPT l
else JUMPF l
fi


