
Attribute Grammars

Attribute Grammars

Wilhelm/Seidl/Hack: Compiler Design, Volume 2, Chapter 4

Reinhard Wilhelm
Universität des Saarlandes

wilhelm@cs.uni-saarland.de

Attribute Grammars

Attribute Grammars

Attributes: containers for static semantic (non-context–free
syntactic) information,

Directions: attributes

inherit information from the (upper) context,
synthesize information from information in

subtrees,

Semantic rules: define computation of attribute values.

Attribute Grammars

Attributes as Carriers of Context Information

↓

X1 Xnp

X0

⇓

↑

↓ ↓

⇑⇑

Inherited

Synthesized

⇓

⇑

Attribute Grammars

Example Grammar: Scoping
Describes nested scopes;

◮ a statement may be a block, consisting of a declaration aprt
followed by a statement part,

◮ declaration parts consist of lists of procedure declarations,
◮ procedures, declared later in a list, may be called from within

procedures declared earlier.

attribute grammar Scopes:

nonterminals Stms, Stm, Decls, Decl, Id, Args, Ptype;

domain Env = String → Types;

attributes syn ok with Decls, Decl, Stms, Stm domain Bool;

inh e-env with Stms, Stm, Decls, Decl domain Env;

inh it-env with Decls, Decl domain Env;

syn st-env with Decls, Decl domain Env;

syn name with Id domain String;

syn type with Ptype, Args domain Types;

Attribute Grammars

ok is true,

◮ if all used identifiers are declared, and
◮ if there are no multiple declarations of one

identifier in the same scope.

it-env, st-env are “temporary environments”, in which declarative
information is collected.
A check for double declarations is made while
collecting local declarations in it-env.

e-env is the “effective” environment, in which procedure
calls are type checked.
For each nested scope, the effective environment is
obtained by over-writing the external effective
environment with the locally constructed
environment.

Attribute Grammars

rules

0 : Stms → Stm
1 : Stms → Stms ; Stm

Stms0.ok = Stms1.ok and Stm.ok
2 : Stm → begin Decls ; Stms end

Decls.it-env = ∅

Stms.e-env = Stm.e-env + Decls.st-env
Decls.e-env = Stm.e-env + Decls.st-env
Stm.ok = Decls.ok and Stms.ok

3 : Decls → Decl
4 : Decls → Decls ; Decl

Decls1.it-env = Decls0.it-env
Decl.it-env = Decls1.st-env
Decls0.st-env = Decl.st-env
Decls0.ok = Decls1.ok and Decl.ok

5 : Decl → proc Id : Ptype is Stms
Decl.st-env = Decl.it-env + { Id.name 7→ Ptype.type }
Stms.e-env = Decl.e-env
Decl.ok = undef(Id.name, Decl.it-env) and Stms.ok

6 : Stm → call Id (Args)
Stm.ok = def(Id.name, Stm.e-env) and

check(Args.type, Stm.e-env(Id.name))

Attribute Grammars

Local Dependencies in the Scopes-AG

Stms1:

Stms Stm

oke-env

2:

Decls

Stm

Stms

e-env ok

it-env st-env

4: Decls

Decls Decl

st-env okit-enve-env

5: Decl

Id StmsPtype

st-env oke-env it-env

6: Stm

Id Args

e-env ok

Attribute Grammars

Attribute Grammars – Terminology

Let G = (VN ,VT ,P ,S) be a CFG, the underlying CFG.
The p−th production in P is written as
p : X0 → X1 . . . Xnp ,
Xi ∈ VN ∪ VT , 1 ≤ i ≤ np , X0 ∈ VN .
An attribute grammar (AG) over G consists of

◮ two disjoint sets Inh and Syn of inherited resp. synthesized
attributes,

◮ an association of two sets Inh(X) ⊆ Inh and Syn(X) ⊆ Syn
with each symbol in VN ∪ VT ;

◮ Attr(X) = Inh(X)∪ Syn(X) set of all attributes of X ;
◮ a ∈ Attr(Xi) has an occurrence in production p at occurrence

Xi , written ai .
◮ O(p) is the set of all attribute occurrences in production p.

Attribute Grammars

Attribute Grammars – Terminology cont’d

◮ the association of a domain Da with each attribute a;

◮ a semantic rule

ai = fp,a,i (b1
j1 , . . . , b

k
jk

) (0 ≤ jl ≤ np) (1 ≤ l ≤ k)

for each defining occurrence of an attribute, i.e.,
◮ a ∈ Inh(Xi) for 1 ≤ i ≤ np or
◮ a ∈ Syn(X0) in each production p,

where bl
jl
∈ Attr(Xjl) (0 ≤ jl ≤ np) (1 ≤ l ≤ k).

fp,a,i is thus a function from Db1 × . . . × Dbk to Da.

Attribute Grammars

Attributes as Carriers of Context Information

↓

X1 Xnp

X0

⇓

↑

↓ ↓

⇑⇑

Inherited

Synthesized

⇓

⇑

Attribute Grammars

More Terminology

◮ Productions of the underlying CFG have instances in syntax
trees.

◮ Node n labelled with X ∈ VN ∪ VT has an instance an of
attribute a ∈ Attr(X).

◮ Hence, there are

attributes associated with non-terminals (and terminals),
attribute occurrences in productions, and
attribute instances at nodes of syntax trees.

◮ The semantic rule for a def. attribute occurrence in a
production determines the values of all corresponding attribute
instances in instances of the production.

◮ Attribute Evaluation is the process of computing the values
of attribute instances in a tree using the semantic rules.

Attribute Grammars

Attribute Occurrences and Attribute Instances

X
n

t

a1

f

a0

X

X

Y YX

an

f

an1

attribute instancesattribute occurrences

a0, a1 an, an1

A production and one of its instances

Attribute Grammars

The p–n–q Situation

Attribute evaluation at node n labelled X is determined by
productions

p applied at parent(n) for the inherited attributes of X
and

q applied at n for the synthesized attributes of X .

X

p

q

n

Attribute Grammars

Semantics of an Attribute Grammar
Let t be a syntax tree to AG G , symb(n) ∈ VN , prod(n) be the
production applied at n.
Attribute instance an of attribute a ∈ Attr(symb(n)) at n has to be
given a value from Da.
Semantic rule ai = fp,a,i (b1

j1
, . . . , bk

jk
) of prod(n) = p induces the

relation on the values of the attribute instances of the instance of
prod(n):

val (ani) = fp,a,i (val (b
1
nj1), . . . , val (b

k
njk

))

G induces a system of equations for t:
◮ variables are the attribute instances at the nodes of t,
◮ equations are defined by the above relation,
◮ recursion would in general not permit an evaluation of all

attribute instances.
◮ AG, which never induces a recursive system of equations, is

called well formed.

Attribute Grammars

Normal Form

◮ Attribute occurrences ai where a ∈ Inh(Xi) and 1 ≤ i ≤ np

or a ∈ Syn(X0) are defining occurrences.

◮ All others are applied occurrences.

◮ AG is in normal form, if all arguments of semantic functions
are applied occurrences.

Consequences of Normal Form:

◮ Semantic rules define values of def. occurrences in terms of
appl. occurrences.

◮ Computation of the value of an attribute in one instance of a
production (in a tree) requires the previous evaluation of an
attribute in a neigbouring instance of a production.

◮ For later: Chains of attribute dependences inside a production
have at most length one.

Attribute Grammars

Short Circuit Evaluation of Boolean Expressions

The generated code:

◮ only load–instructions and conditional jumps;

◮ no instructions for and, or and not;

◮ subexpressions evaluated from left to right;

◮ for each (sub)expression, only the smallest subexpression is
evaluated, which determines the value of the whole
(sub)expression.

Attribute Grammars

Code for the Boolean expression (a and b) or not c :

LOAD a
JUMPF L1 jump-on-false
LOAD b
JUMPT L2 jump-on-true

L1: LOAD c
JUMPT L3

L2: Code for true–successor
L3: Code for false–successor

Attribute Grammars

Attribute grammar BoolExp describes

◮ code generation for short circuit evaluation,

◮ label generation for subexpressions,

◮ transport of labels for true– and false–successors to primitive
subexpressions translated into jumps.

Attribute Grammars

Synthesized attribute jcond computes the correlation of the values
of an expression with that of its rightmost identifier x .
Value of jcond at expression e

true: The loaded value of x equals value of e,

false: The loaded value of x is negation of value of e.

Means for code generation:
Instruction following LOAD x is conditional jump to true–successor

JUMPT if jcond =true,

JUMPF if jcond =false.

Attribute Grammars

attribute grammar BoolExp

nonterminals IFSTAT, STATS, E, T, F;

attributes inh tsucc, fsucc with E,T,F domain string;
syn jcond with E,T,F domain bool;
syn code with IFSTAT, E,T,F domain string;

Attribute Grammars

rules

IFSTAT → if E then STATS else STATS fi

E.tsucc = t

E.fsucc = e

IFSTAT.code = E.code ++ gencjump (not E.jcond, e) ++
t: ++ STATS1.code ++ genujump (f) ++ e: ++ STATS2.code ++ f:

E → T

E → E or T

E1.fsucc = t

E0.jcond = T.jcond

E0.code = E1.code ++ gencjump (E1.jcond, E0.tsucc) ++ t: ++ T.code

T → F

T → T and F

T1.tsucc = f

T0.jcond = F.jcond

T0.code = T1.code ++ gencjump (not T1.jcond, T0.fsucc) ++ f: ++ F.code

F → (E)

F → not F

F1.tsucc = F0.fsucc

F1.fsucc = F0.tsucc

F0.jcond = not F1.jcond

F → id

F.jcond = true

F.code = LOAD id.identifier

Attribute Grammars

Auxilliary functions:

genujump (l) = JUMP l
gencjump (jc, l) = if jc = true

then JUMPT l
else JUMPF l
fi

