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“Standard” Structure

source(text)

?

lexical analysis(Chap. 2)
finite automata

?

tokenized-program

?

syntax analysis(Chap. 3)
pushdown automata

?

syntax-tree

?

semantic-analysis(Chap. 4)
attribute grammar evaluators

?

decorated syntax-tree

?

optimizations(Vol. 3)
abstract interpretation + transformations

?

intermediate rep.

?

code-generation(Vol. 4)
tree automata + dynamic programming + · · ·

?

machine-program
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When is a Program Incorrect?
A program is incorrect, if it does not adhere to language-specific
constraints.

◮ Scanner: Catches sequence of characters that do not form
valid tokens
Example: ïnτ instead of int
Specification mechanism: regular expressions (cannot describe
matching parentheses)

◮ Parser: Catches sequence of symbols that do not form valid
words in a CFG
Example: while while int 2 do

Specification mechanism: CFGs (cannot describe declaredness
requirements)

◮ This leaves context sensitive constraints
Example: int f(){return 4;} void g(){return f(6);}
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Semantic Constraints

Typical semantic constraints, checked by the compiler:

◮ Each variable declared in an enclosing scope.

◮ Variables uniquely declared within a scope.

◮ Types of operands and operators in expressions must match.

Programs violating such semantic constraints are rejected by the
compiler.
Note: Dynamic semantic constraints (no division by zero, no
dereferencing of null pointers) are not (cannot) be checked by the
compiler, the potential can, cf. static program analysis (Vol. 3)!
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Types and Variables: Terminology

◮ Identifiers denote program objects (variables, constants, types,
methods,. . . ).

◮ A declaration introduces an identifier, binds it to an element.

◮ A defining occurence of an identifier is an occurence in a
declaration.

◮ An applied occurence of an identifier is an occurence
somewhere else.

◮ The scope of a defining occurence is that (textual) part of a
program, in which an applied occurence may refer to this
defining occurrence.

◮ A defining occurence of an identifier is visible, if it is directly
visible (in the scope) or made visible by name extensions
(std::cin)
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Types and Variables: Terminology (continued)

◮ The type of a constant (variable) constrains which operations
can be applied to the constant (variable).

◮ Overload of an identifier is the legal existence of several
defining occurrences of this identifier in the same scope.
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Symbol Table

◮ A data structure used to store information on declared objects

◮ Supports insertions and deletions of declarations and opening
and closing of scopes

◮ Supports efficient search for the defining occurrence associated
with an applied occurrence: identification of identifiers
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Symbol Table Functionality

Language with nested scopes, (blocks
create_symb_table creates an empty symbol table,
enter_block notes the start of a new scope,
exit_block resets the symbol table to the state

before the last enter_block,
enter_id(id, decl_ptr) inserts an entry for identifier id

with a link to its defining occurrence
passed in decl_ptr,

search_id(id) searches the def. occ. for id
returns a pointer to it if exists.
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Symbol Table Implementation

◮ Data structure with constant time for search_id,

◮ all currently valid defining occurrences of an identifier are
stored in a (stack like) linear list,

◮ new entry is inserted at the end of this list,

◮ the end of this list is pointed to by an array component for this
identifier,

◮ all entries for a block are chained through a linear list.
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proc create_symb_table;
begin create empty stack of block entries end ;

proc enter_block;
begin push entry for the new block end ;

proc exit_block;
begin

foreach decl. entry of the curr. block do

delete entry

od;
pop block entry from stack

end ;

proc enter_id ( id: Idno; decl: ↑ node );
begin

if exists entry for id in curr. block

then error(′′double declaration′′)
fi;
create new entry with decl and no. of curr. block;

insert entry at tail of linear list for id;
insert entry at tail of linear list for curr. block

end ;
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function search_id ( id: idno ) ↑ node;
begin

if list for id is empty

then error(′′undeclared identifier′′)
else return (value of decl-field of first elem. in id-list)
fi

end
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Example Program with Symboltable
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Declaration Analysis

proc analyze_decl (k : node);
proc analyze_subtrees (root: node);
begin

for i := 1 to #descs(root) do (∗ # children ∗)
analyze_decl(root.i) (∗ i-th child of root ∗)

od
end ;

begin
case symb(k) of (∗ label of k ∗)
block: begin

enter_block;
analyze_subtrees(k);
exit_block

end ;
decl: begin

analyze_subtrees(k);
foreach identifier declared here id do

enter_id(id, ↑ k)
od

end ;
appl_id:(∗ appl. occ. of identifier id ∗)

store search_id(id) at k;
otherwise: if k no leaf then analyze_subtrees(k) fi
od

end
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Overloading of Operators

◮ An operator symbol (function, procedure identifier) is
overloaded, if it may denote several operations at some point
in the program.

◮ The different operators need to have different parameter
profiles, i.e., tuples of argument and result types.

◮ The identification of identifiers may have legally associated
several possible parameter profiles with an applied occurrence.

◮ Overload Resolution needs to identify exactly one defining
occurrence depending on its parameter profile.
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Overload Resolution I

Overload resolution for Ada:

◮ Conceptually 4 passes over trees for assignments.

◮ Passes 1 (initialization) and 2 (bottom-up elimination) and
passes 3 (top-down elimination) and 4 (check) can be merged.

begin

init_ops;
bottom_up_elim(root);
top_down_elim(root);
check whether now all ops sets have exactly one element;

otherwise report an error

end
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Overload Resolution II

Functions applied at nodes of assignment trees:
#descs(k) number of child nodes of k ,
symb(k) symbol labeling k ,
vis(k) set of definitions of symb(k) visible at k
ops(k) set of actual candidates for overloaded symbol symb(k),
k .i ith child of k .

For def. occ. of overloaded symbol op with type t1 × · · · × tm → t
rank(op) = m
res_typ(op) = t
par_typ(op, i) = ti (1 ≤ i ≤ m).
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Overload Resolution III

proc resolve_overloading (root: node, a_priori_type: type);

func pot_res_types (k: node): set of type;
(∗ potential types of the result ∗)

return {res_typ(op) | op ∈ ops(k)}

func act_par_types (k: node, i: integer): set of type;
return {par_typ(op, i) | op ∈ ops(k)}

proc init_ops
begin

foreach k
ops(k) := {op | op ∈ vis(k) and rank(op) = #descs(k)}

od;
ops(root) := {op ∈ ops(root) | res_typ(op) = a_priori_typ}

end ;
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Overload Resolution IV

proc bottom_up_elim (k: node);
begin

for i := 1 to #descs(k) do

bottom_up_elim (k .i);
ops(k) := ops(k) − {op ∈ ops(k) | par_typ(op, i) 6∈ pot_res_typ
(∗ remove the operators, whose ith parameter type does not

match the potential result types of the ith operand ∗)
od;

end ;



Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Overload Resolution V

proc top_down_elim (k: node);
begin

for i := 1 to #descs(k) do

ops(k .i) := ops(k .i) − {op ∈ ops(k .i) | res_typ(op) 6∈ act_par_typ
(∗ remove the operators, whose result type does not match

any type of the corresponding parameter ∗)
top_down_elim(k .i)

od;
end ;
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Overload Resolution VI

mnbottom up–Elimination

mn{. . . X . . .}

mn. . .mnimn. . .

mnop1

mnop2mn{. . . X . . .}

mntop down–Elimination

Quite typical information flow, up and down the parse tree!


