
Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Semantic Analysis

Wilhelm/Seidl/Hack: Compiler Design – Syntactic
and Semantic Analysis, Chapter 4

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-sb.de

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

“Standard” Structure

source(text)

?

lexical analysis(Chap. 2)
finite automata

?

tokenized-program

?

syntax analysis(Chap. 3)
pushdown automata

?

syntax-tree

?

semantic-analysis(Chap. 4)
attribute grammar evaluators

?

decorated syntax-tree

?

optimizations(Vol. 3)
abstract interpretation + transformations

?

intermediate rep.

?

code-generation(Vol. 4)
tree automata + dynamic programming + · · ·

?

machine-program

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

When is a Program Incorrect?
A program is incorrect, if it does not adhere to language-specific
constraints.

◮ Scanner: Catches sequence of characters that do not form
valid tokens
Example: ïnτ instead of int
Specification mechanism: regular expressions (cannot describe
matching parentheses)

◮ Parser: Catches sequence of symbols that do not form valid
words in a CFG
Example: while while int 2 do

Specification mechanism: CFGs (cannot describe declaredness
requirements)

◮ This leaves context sensitive constraints
Example: int f(){return 4;} void g(){return f(6);}

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Semantic Constraints

Typical semantic constraints, checked by the compiler:

◮ Each variable declared in an enclosing scope.

◮ Variables uniquely declared within a scope.

◮ Types of operands and operators in expressions must match.

Programs violating such semantic constraints are rejected by the
compiler.
Note: Dynamic semantic constraints (no division by zero, no
dereferencing of null pointers) are not (cannot) be checked by the
compiler, the potential can, cf. static program analysis (Vol. 3)!

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Types and Variables: Terminology

◮ Identifiers denote program objects (variables, constants, types,
methods,. . .).

◮ A declaration introduces an identifier, binds it to an element.

◮ A defining occurence of an identifier is an occurence in a
declaration.

◮ An applied occurence of an identifier is an occurence
somewhere else.

◮ The scope of a defining occurence is that (textual) part of a
program, in which an applied occurence may refer to this
defining occurrence.

◮ A defining occurence of an identifier is visible, if it is directly
visible (in the scope) or made visible by name extensions
(std::cin)

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Types and Variables: Terminology (continued)

◮ The type of a constant (variable) constrains which operations
can be applied to the constant (variable).

◮ Overload of an identifier is the legal existence of several
defining occurrences of this identifier in the same scope.

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Symbol Table

◮ A data structure used to store information on declared objects

◮ Supports insertions and deletions of declarations and opening
and closing of scopes

◮ Supports efficient search for the defining occurrence associated
with an applied occurrence: identification of identifiers

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Symbol Table Functionality

Language with nested scopes, (blocks
create_symb_table creates an empty symbol table,
enter_block notes the start of a new scope,
exit_block resets the symbol table to the state

before the last enter_block,
enter_id(id, decl_ptr) inserts an entry for identifier id

with a link to its defining occurrence
passed in decl_ptr,

search_id(id) searches the def. occ. for id
returns a pointer to it if exists.

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Symbol Table Implementation

◮ Data structure with constant time for search_id,

◮ all currently valid defining occurrences of an identifier are
stored in a (stack like) linear list,

◮ new entry is inserted at the end of this list,

◮ the end of this list is pointed to by an array component for this
identifier,

◮ all entries for a block are chained through a linear list.

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

proc create_symb_table;
begin create empty stack of block entries end ;

proc enter_block;
begin push entry for the new block end ;

proc exit_block;
begin

foreach decl. entry of the curr. block do

delete entry

od;
pop block entry from stack

end ;

proc enter_id (id: Idno; decl: ↑ node);
begin

if exists entry for id in curr. block

then error(′′double declaration′′)
fi;
create new entry with decl and no. of curr. block;

insert entry at tail of linear list for id;
insert entry at tail of linear list for curr. block

end ;

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

function search_id (id: idno) ↑ node;
begin

if list for id is empty

then error(′′undeclared identifier′′)
else return (value of decl-field of first elem. in id-list)
fi

end

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Example Program with Symboltable
1

2

3

4

proc p (* forward decl. *)

proc q

proc p is

Decl. of a, c

Decl. of c , d

proc q is

Decl. of a, d
proc r

proc r is

Decl. of a, c

Decl. of a, b

∗

7

6

5

4

3

2

1

r

q

p

d

c

b

a −→ //1/3/4

/11

/51

−→

−→

−→

−→

−→

−→

4 3

4

3 1 1

3

1 6 /7

4

1 4 /

/

/3

21

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Declaration Analysis

proc analyze_decl (k : node);
proc analyze_subtrees (root: node);
begin

for i := 1 to #descs(root) do (∗ # children ∗)
analyze_decl(root.i) (∗ i-th child of root ∗)

od
end ;

begin
case symb(k) of (∗ label of k ∗)
block: begin

enter_block;
analyze_subtrees(k);
exit_block

end ;
decl: begin

analyze_subtrees(k);
foreach identifier declared here id do

enter_id(id, ↑ k)
od

end ;
appl_id:(∗ appl. occ. of identifier id ∗)

store search_id(id) at k;
otherwise: if k no leaf then analyze_subtrees(k) fi
od

end

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Overloading of Operators

◮ An operator symbol (function, procedure identifier) is
overloaded, if it may denote several operations at some point
in the program.

◮ The different operators need to have different parameter
profiles, i.e., tuples of argument and result types.

◮ The identification of identifiers may have legally associated
several possible parameter profiles with an applied occurrence.

◮ Overload Resolution needs to identify exactly one defining
occurrence depending on its parameter profile.

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Overload Resolution I

Overload resolution for Ada:

◮ Conceptually 4 passes over trees for assignments.

◮ Passes 1 (initialization) and 2 (bottom-up elimination) and
passes 3 (top-down elimination) and 4 (check) can be merged.

begin

init_ops;
bottom_up_elim(root);
top_down_elim(root);
check whether now all ops sets have exactly one element;

otherwise report an error

end

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Overload Resolution II

Functions applied at nodes of assignment trees:
#descs(k) number of child nodes of k ,
symb(k) symbol labeling k ,
vis(k) set of definitions of symb(k) visible at k
ops(k) set of actual candidates for overloaded symbol symb(k),
k .i ith child of k .

For def. occ. of overloaded symbol op with type t1 × · · · × tm → t
rank(op) = m
res_typ(op) = t
par_typ(op, i) = ti (1 ≤ i ≤ m).

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Overload Resolution III

proc resolve_overloading (root: node, a_priori_type: type);

func pot_res_types (k: node): set of type;
(∗ potential types of the result ∗)

return {res_typ(op) | op ∈ ops(k)}

func act_par_types (k: node, i: integer): set of type;
return {par_typ(op, i) | op ∈ ops(k)}

proc init_ops
begin

foreach k
ops(k) := {op | op ∈ vis(k) and rank(op) = #descs(k)}

od;
ops(root) := {op ∈ ops(root) | res_typ(op) = a_priori_typ}

end ;

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Overload Resolution IV

proc bottom_up_elim (k: node);
begin

for i := 1 to #descs(k) do

bottom_up_elim (k .i);
ops(k) := ops(k) − {op ∈ ops(k) | par_typ(op, i) 6∈ pot_res_typ
(∗ remove the operators, whose ith parameter type does not

match the potential result types of the ith operand ∗)
od;

end ;

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Overload Resolution V

proc top_down_elim (k: node);
begin

for i := 1 to #descs(k) do

ops(k .i) := ops(k .i) − {op ∈ ops(k .i) | res_typ(op) 6∈ act_par_typ
(∗ remove the operators, whose result type does not match

any type of the corresponding parameter ∗)
top_down_elim(k .i)

od;
end ;

Semantic Analysis Wilhelm/Seidl/Hack: Compiler Design – Syntactic and Semantic Analysis, Chapter 4

Overload Resolution VI

mnbottom up–Elimination

mn{. . . X . . .}

mn. . .mnimn. . .

mnop1

mnop2mn{. . . X . . .}

mntop down–Elimination

Quite typical information flow, up and down the parse tree!

