Bottom-Up Syntax Analysis

Wilhelm/Seidl/Hack: Compiler Design - Syntactic and Semantic Analysis, Chapter 3

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-saarland.de and
Mooly Sagiv
Tel Aviv University
sagiv@math.tau.ac.il

Subjects

- Functionality and Method
- Example Parsers
- Derivation of a Parser
- Conflicts
- LR(k)-Grammars
- LR(1)-Parser Generation
- Bison

Bottom-Up Syntax Analysis

Input: A stream of symbols (tokens)
Output: A syntax tree or error
Method: until input consumed or error do

- shift next symbol or reduce by some production
- decide what to do by looking k symbols ahead

Properties

- Constructs the syntax tree in a bottom-up manner
- Finds the rightmost derivation (in reversed order)
- Reports error as soon as the already read part of the input is not a prefix of a program (valid prefix property)

Parsing $a a b b$ in the grammar $G_{a b}$ with $S \rightarrow a S b \mid \epsilon$

Stack	Input	Action	Dead ends
$\$$	$a a b b \#$	shift	reduce $S \rightarrow \epsilon$
$\$ a$	$a b b \#$	shift	reduce $S \rightarrow \epsilon$
$\$ a a$	$b b \#$	reduce $S \rightarrow \epsilon$	shift
$\$ a a S$	$b b \#$	shift	reduce $S \rightarrow \epsilon$
$\$ a a S b$	$b \#$	reduce $S \rightarrow a S b$	shift, reduce $S \rightarrow \epsilon$
$\$ a S$	$b \#$	shift	reduce $S \rightarrow \epsilon$
$\$ a S b$	$\#$	reduce $S \rightarrow a S b$	reduce $S \rightarrow \epsilon$
$\$ S$	$\#$	accept	reduce $S \rightarrow \epsilon$

Issues:

- Shift vs. Reduce
- Reduce $A \rightarrow \beta$, Reduce $B \rightarrow \alpha \beta$

Parsing a a in the grammar $S \rightarrow A B, S \rightarrow A, A \rightarrow a, B \rightarrow a$

Stack	Input	Action	Dead ends
$\$$	$a a \#$	shift	
$\$ a$	$a \#$	reduce $A \rightarrow a$	reduce $B \rightarrow a$, shift
$\$ A$	$a \#$	shift	reduce $S \rightarrow A$
$\$ A a$	$\#$	reduce $B \rightarrow a$	reduce $A \rightarrow a$
$\$ A B$	$\#$	reduce $S \rightarrow A B$	
$\$ S$	$\#$	accept	

Issues:

- Shift vs. Reduce
- Reduce $A \rightarrow \beta$, Reduce $B \rightarrow \alpha \beta$

Shift-Reduce Parsers

- The bottom-up Parser is a shift-reduce parser, each step is a shift: consuming the next input symbol or a reduction: reducing a suffix of the stack contents by some production.
- the problem is to decide when to stop shifting and make a reduction instead.
- a next right side to reduce is called a "handle", reducing too early: dead end, reducing too late: burying the handle.

LR-Parsers - Deterministic Shift-Reduce Parsers

Parser decides whether to shift or to reduce based on

- the contents of the stack and
- k symbols lookahead into the rest of the input

Property of the LR-Parser: it suffices to consider the topmost state on the stack instead of the whole stack contents.

From P_{G} to LR-Parsers for G

- P_{G} has non-deterministic choice of expansions,
- LL-parsers eliminate non-determinism by looking ahead at expansions,
- LR-parsers pursue all possibilities in parallel (corresponds to the subset-construction in NFSM \rightarrow DFSM).

Derivation

1. Characteristic finte-state machine of G, a description of P_{G}
2. Make deterministic
3. Interpret as control of a push down automaton
4. Check for "inedaquate" states

From P_{G} to LR-Parsers for G

- P_{G} has non-deterministic choice of expansions,
- LL-parsers eliminate non-determinism by looking ahead at expansions,
- LR-parsers pursue all possibilities in parallel (corresponds to the subset-construction in NFSM \rightarrow DFSM).

Derivation

1. Characteristic finte-state machine of G, a description of P_{G}
2. Make deterministic
3. Interpret as control of a push down automaton
4. Check for "inedaquate" states

Characteristic Finite-State Machine of G

$\operatorname{NFSM} \operatorname{ch}(G)=\left(Q_{c}, V_{c}, \Delta_{c}, q_{c}, F_{c}\right)$ - the characteristic finte-state machine of G :

- $Q_{c}=I t_{G}$ - states: the items of G
- $V_{c}=V_{T} \cup V_{N}$ - input alphabet: the sets of terminal and non-terminal symbols
- $q_{c}=\left[S^{\prime} \rightarrow . S\right]$ - start state
- $F_{c}=\{[X \rightarrow \alpha] \mid. X \rightarrow \alpha \in P\}$ - final states: the complete items
- $\Delta_{c}=$

$$
\{([X \rightarrow \alpha . Y \beta], Y,[X \rightarrow \alpha Y . \beta]) \mid X \rightarrow \alpha Y \beta \in P \text { and }
$$

$$
\left.Y \in V_{N} \cup V_{T}\right\} \cup
$$

$$
\{([X \rightarrow \alpha . Y \beta], \varepsilon,[Y \rightarrow . \gamma]) \mid X \rightarrow \alpha Y \beta \in P \text { and } Y \rightarrow \gamma \in P\}
$$

Item PDA for $G_{a b}: \quad S \rightarrow a S b \mid \epsilon$
$P_{G_{a b}}$

Stack	Input	New Stack
$\left[S^{\prime} \rightarrow . S\right]$	ϵ	$\left[S^{\prime} \rightarrow . S\right][S \rightarrow . a S b]$
$\left[S^{\prime} \rightarrow . S\right]$	ϵ	$\left[S^{\prime} \rightarrow . S\right][S \rightarrow]$.
$[S \rightarrow . a S b]$	a	$[S \rightarrow a . S b]$
$[S \rightarrow a . S b]$	ϵ	$[S \rightarrow a . S b][S \rightarrow . a S b]$
$[S \rightarrow a . S b]$	ϵ	$[S \rightarrow a . S b][S \rightarrow]$.
$[S \rightarrow a S . b]$	b	$[S \rightarrow a S b]$.
$[S \rightarrow a . S b][S \rightarrow]$.	ϵ	$[S \rightarrow a S . b]$
$[S \rightarrow a . S b][S \rightarrow a S b]$.	ϵ	$[S \rightarrow a S . b]$
$\left[S^{\prime} \rightarrow . S\right][S \rightarrow a S b]$.	ϵ	$\left[S^{\prime} \rightarrow S.\right]$
$\left[S^{\prime} \rightarrow . S\right][S \rightarrow]$.	ϵ	$\left[S^{\prime} \rightarrow S.\right]$

The Characteristic NFSM

Characteristic NFSM for G_{0}

$$
\begin{array}{lll}
S & \rightarrow & E \\
E & \rightarrow & E+T \mid T \\
T & \rightarrow & T * F \mid F \\
F & \rightarrow & (E) \mid \text { id }
\end{array}
$$

Interpreting $\operatorname{ch}(G)$

State of $\operatorname{ch}(G)$ is the current state of P_{G}, i.e. the state on top of P_{G} 's stack. Adding actions to the transitions and states of $\operatorname{ch}(G)$ to describe P_{G} :
ε-transitions: push new state of $\operatorname{ch}(G)$ onto stack of P_{G} : new current state.
reading transitions: shifting transitions of P_{G} : replace current state of P_{G} by the shifted one.
final state: Actions in P_{G} :

- pop final state $[X \rightarrow \alpha$.] from the stack,
- do a transition from the new topmost state under X,
- push the new state onto the stack.

The Handle Revisited

- The bottom up-Parser is a shift-reduce-parser, each step is
a shift: consuming the next input symbol, making a transition under it from the current state, pushing the new state onto the stack.
a reduction: reducing a suffix of the stack contents by some production, making a transition under the left side non-terminal from the new current state, pushing the new state.
- the problem is the localization of the "handle", the next right side to reduce.
reducing too early: dead end, reducing too late: burying the handle.

Handles and Reliable Prefixes

Some Abbreviations:
RMD - rightmost derivation
RSF - right sentential form
$S^{\prime} \underset{r m}{*} \beta X u \underset{r m}{\Longrightarrow} \beta \alpha u-a \mathrm{RMD}$ of $\mathrm{cfg} G$.

- α is a handle of $\beta \alpha u$.

The part of a RSF next to be reduced.

- Each prefix of $\beta \alpha$ is a reliable prefix. A prefix of a RSF stretching at most up to the end of the handle,
i.e. reductions if possible then only at the end.

Examples in G_{0}

RSF (handle)	reliable prefix	Reason
$E+\underline{F}$	$E, E+, E+F$	$S \underset{r m}{\Longrightarrow} E \underset{r m}{\Longrightarrow} E+T \underset{r m}{\Longrightarrow} E+F$
$T * \underline{\text { id }}$	$T, T *, T * \mathbf{i d}$	$S \underset{r m}{3} T * F \underset{r m}{\Longrightarrow} T *$ id
$E * \mathbf{i d}$	F	$S \underset{r m}{4} T * \mathbf{i d} \underset{r m}{\Longrightarrow} F *$ id
$T * \underline{\text { id }}+\mathbf{i d}$	$T, T *, T * \mathbf{i d}$	$S \underset{r m}{3} T * F \underset{r m}{\Longrightarrow} T *$ id

Valid Items

[$X \rightarrow \alpha . \beta$] is valid for the reliable prefix $\gamma \alpha$, if there exists a
RMD $S^{\prime} \underset{r m}{*} \gamma X_{w}^{\Longrightarrow} \gamma \alpha \beta w$.
An item valid for a reliable prefix gives one interpretation of the parsing situation.
Some reliable prefixes of G_{0}

Viable Prefix	Valid Items	Reason	γ	w	X	α	β
$E+$	$[E \rightarrow E+. T]$	$S \underset{r m}{\Longrightarrow} E \underset{r m}{\Longrightarrow} E+T$	ε	ε	E	$E+$	
	$[T \rightarrow . F]$	$S \underset{r m}{*} E+T \underset{r m}{\Longrightarrow} E+F$	$E+$	ε	T	ε	F
	$[F \rightarrow . i d]$	$S \underset{r m}{*} E+F \underset{r m}{\Longrightarrow} E+\mathbf{i d}$	$E+$	ε	F	ε	id
$(E+1$	$[F \rightarrow(. E)]$	$\begin{gathered} S \stackrel{*}{\Rightarrow}(E+F) \\ \underset{r m}{\Rightarrow}(E+(E)) \end{gathered}$	($E+$)	F	(E)

Valid Items and Parsing Situations

Given some input string xuvw.
The RMD
$S^{\prime} \underset{r m}{*} \gamma X w \underset{r m}{\Longrightarrow} \gamma \alpha \beta w \underset{r m}{*} \gamma \alpha v w \underset{r m}{*} \gamma u v w \underset{r m}{*} x u v w$
describes the following sequence of partial derivations:
$\gamma \underset{r m}{*} x \quad \alpha \underset{r m}{*} u \quad \beta \underset{r m}{*} v \quad X \underset{r m}{\Longrightarrow} \alpha \beta$
$S^{\prime} \xrightarrow[r m]{*} \gamma X w$
executed by the bottom-up parser in this order.
The valid item $[X \rightarrow \alpha . \beta$] for the reliable prefix $\gamma \alpha$ describes the situation after partial derivation 2, that is, for RSF $\gamma \alpha v w$

Theorems

$$
\operatorname{ch}(G)=\left(Q_{c}, V_{c}, \Delta_{c}, q_{c}, F_{c}\right)
$$

Theorem
For each reliable prefix there is at least one valid item.
Every parsing situation is described by at least one valid item.
Theorem
Let $\gamma \in\left(V_{T} \cup V_{N}\right)^{*}$ and $q \in Q_{c}$.
$\left(q_{c}, \gamma\right) \vdash_{c h(G)}^{*}(q, \varepsilon)$ iff γ is a reliable prefix and q is a valid item for
γ.
A reliable prefix brings $\operatorname{ch}(G)$ from its initial state to all its valid items.

Theorem
The language of reliable prefixes of a cfg is regular.

Making $c h(G)$ deterministic

Apply NFSM \rightarrow DFSM to $c h(G)$: Result $L R_{0}(G)$.
Example: $c h\left(G_{a b}\right)$

$L R_{0}\left(G_{a b}\right):$

Characteristic NFSM for G_{0}

$$
\begin{array}{lll}
S & \rightarrow & E \\
E & \rightarrow & E+T \mid T \\
T & \rightarrow & T * F \mid F \\
F & \rightarrow & (E) \mid \text { id }
\end{array}
$$

$L R_{0}\left(G_{0}\right)$

The States of $L R_{0}\left(G_{0}\right)$ as Sets of Items

$$
\begin{array}{rlrl}
S_{0}=\{ & {[S \rightarrow . E],} & S_{5}=\{ & [F \rightarrow \mathbf{i d} .]\} \\
& {[E \rightarrow . E+T],} \\
& {[E \rightarrow . T],} & S_{6}=\{ & {[E \rightarrow E+. T],} \\
& {[T \rightarrow . T * F],} & & {[T \rightarrow . T * F],} \\
& {[T \rightarrow . F],} & & {[T \rightarrow . F],} \\
& {[F \rightarrow .(E)],} & & {[F \rightarrow .(E)],} \\
& [F \rightarrow . i d]\} & & [F \rightarrow . i d]\}
\end{array}
$$

$$
\begin{aligned}
S_{1}=\{ & {[S \rightarrow E .], }
\end{aligned} \quad S_{7}=\left\{\begin{array}{l}
{[T \rightarrow T * . F],} \\
\\
\\
\\
[E \rightarrow E .+T]\}
\end{array} \quad[F \rightarrow .(E)],\right.
$$

$$
S_{2}=\left\{\begin{array}{ll}
{[E \rightarrow T .],} \\
[T \rightarrow T . * F]\}
\end{array} \quad S_{8}=\left\{\begin{array}{l}
[F \rightarrow . \mathbf{i d}]\} \\
{[F \rightarrow(E .)],} \\
{[E \rightarrow E .+}
\end{array}\right.\right.
$$

$$
\begin{aligned}
S_{3}=\{\quad[T \rightarrow F .]\} \quad S_{9} \quad=\left\{\begin{array}{l}
{[E \rightarrow E+T .]} \\
\\
\end{array} \quad[T \rightarrow T . * F]\right\}
\end{aligned}
$$

$$
S_{4}=\left\{\quad[F \rightarrow(. E)], \quad S_{10}=\{\quad[T \rightarrow T * F .]\}\right.
$$

$$
[E \rightarrow . E+T]
$$

$$
[E \rightarrow . T]
$$

$$
[T \rightarrow T T * F]
$$

$$
S_{11}=\{\quad[F \rightarrow(E) .]\}
$$

$$
[T \rightarrow . F]
$$

$$
[F \rightarrow .(E)]
$$

$$
[F \rightarrow . \text { id }]\}
$$

Theorems

$$
c h(G)=\left(Q_{c}, V_{c}, \Delta_{c}, q_{c}, F_{c}\right) \text { and } L R_{0}(G)=\left(Q_{d}, V_{N} \cup V_{T}, \Delta, q_{d}, F_{d}\right)
$$

Theorem
Let γ be a reliable prefix and $p(\gamma) \in Q_{d}$ be the uniquely determined state, into which $L R_{0}(G)$ transfers out of the initial state by reading γ, i.e., $\left(q_{d}, \gamma\right) \vdash_{\text {LRo(G) }}^{*}(p(\gamma), \varepsilon)$. Then
(a) $p(\varepsilon)=q_{d}$
(b) $p(\gamma)=\left\{q \in Q_{c} \mid\left(q_{c}, \gamma\right) \stackrel{\rightharpoonup}{c h(G)}_{*}^{*}(q, \varepsilon)\right\}$
(c) $p(\gamma)=\left\{i \in I_{G} \mid i\right.$ valid for $\left.\gamma\right\}$
(d) Let 「 the (in general infinite) set of all reliable prefixes of G. The mapping $p: \Gamma \rightarrow Q_{d}$ defines a finite partition on Γ.
(e) $L\left(L R_{0}(G)\right)$ is the set of reliable prefixes of G that end in a handle.
G_{0}
$\gamma=E+F$ is a reliable prefix of G_{0}.
With the state $p(\gamma)=S_{3}$ are also associated:
$F,(F,((F),((F, \ldots$
$T *(F, T *((F, T *(((F, \ldots$
$E+F, E+(F, E+((F, \ldots$
Regard S_{6} in $L R_{0}\left(G_{0}\right)$.
It consists of all valid items for the reliable prefix $E+$,
i.e., the items
$[E \rightarrow E+. T],[T \rightarrow . T * F],[T \rightarrow . F],[F \rightarrow . i d],[F \rightarrow .(E)]$.
Reason:
$E+$ is prefix of the RSF $E+T$;
$S \underset{r m}{\Longrightarrow} E \underset{r m}{\Longrightarrow} E+T \quad F \underset{r m}{\Longrightarrow} E+$ id
Therefore $\quad[E \rightarrow E+. T] \quad[T \rightarrow . F] \quad[F \rightarrow . i d]$
are valid.

What the $L R_{0}(G)$ describes

$L R_{0}(G)$ interpreted as a PDA $P_{0}(G)=\left(\Gamma, V_{T}, \Delta, q_{0},\left\{q_{f}\right\}\right)$
$\Gamma,\left(\right.$ stack alphabet): the set Q_{d} of states of $L R_{0}(G)$.
$q_{0}=q_{d}$ (initial state): in the stack of $P_{0}(G)$ initially.
$q_{f}=\left\{\left[S^{\prime} \rightarrow S.\right]\right\}$ the final state of $L R_{0}(G)$,
$\Delta \subseteq \Gamma^{*} \times\left(V_{T} \cup\{\varepsilon\}\right) \times \Gamma^{*}$ (transition relation):
Defined as follows:

$L R_{0}(G)$'s Transition Relation

shift: $\left(q, a, q \delta_{d}(q, a)\right) \in \Delta$, if $\delta_{d}(q, a)$ defined.
Read next input symbol a and push successor state of q under a (item $[X \rightarrow \cdots, a \cdots] \in q$).
reduce: $\left(q q_{1} \ldots q_{n}, \varepsilon, q \delta_{d}(q, X)\right) \in \Delta$, if $[X \rightarrow \alpha.] \in q_{n},|\alpha|=n$. Remove $|\alpha|$ entries from the stack.
Push the successor of the new topmost state under X onto the stack.

Note the difference in the stacking behavior:

- the Item PDA P_{G} keeps on the stack only one item for each production under analysis,
- the PDA described by the $L R_{0}(G)$ keeps $|\alpha|$ states on the stack for a production $X \rightarrow \alpha \beta$ represented with item $[X \rightarrow \alpha . \beta]$

Reduction in PDA $P_{0}(G)$

$$
\begin{aligned}
& {[\cdots \rightarrow \cdots, x \cdots]} \\
& {[X \rightarrow . \alpha]}
\end{aligned}
$$

Some observations and recollections

- also works for reductions of ϵ,
- each state has a unique entry symbol,
- the stack contents uniquely determine a reliable prefix,
- current state (topmost) is the state associated with this reliable prefix,
- current state consists of all items valid for this reliable prefix.

Non-determinism in $P_{0}(G)$

$P_{0}(G)$ is non-deterministic if either
Shift-reduce conflict: There are shift as well as reduce transitions out of one state, or
Reduce-reduce conflict: There are more than one reduce transitions from one state.

States with a shift-reduce conflict have at least one read item

$$
\begin{aligned}
& {[X \rightarrow \alpha . a \beta] \text { and at least one complete item }} \\
& {[Y \rightarrow \gamma .] .}
\end{aligned}
$$

States with a reduce-reduce conflict have at least two complete items $[Y \rightarrow \alpha],.[Z \rightarrow \beta$.$] .$

A state with a conflict is inadequate.

Some Inadequate States

$L R_{0}\left(G_{0}\right)$ has three inadequate states, S_{1}, S_{2} and S_{9}.
S_{1} : Can reduce E to S (complete item [$\left.S \rightarrow E.\right]$) or read " + " (shift-item $[E \rightarrow E .+T]$);
S_{2} : Can reduce T to E (complete item [$E \rightarrow T$.]) or read "*" (shift-item $[T \rightarrow T . * F]$);
S_{9} : Can reduce $E+T$ to E (complete item $[E \rightarrow E+T$.]) or read " $*$ " (shift-item [T \rightarrow.*F]).

Direct Construction of the $L R_{0}(G)$

Algorithm $L R_{0}$:
Input: $\operatorname{cfg} G=\left(V_{N}^{\prime}, V_{T}, P^{\prime}, S^{\prime}\right)$
Output: $L R_{0}(G)=\left(Q_{d}, V_{N} \cup V_{T}, q_{d}, \delta_{d}, F_{d}\right)$
Method: The states and the transitions of the $L R_{0}(G)$
are constructed using the following three functions
Start, Closure and Succ
F_{d} - set of states with at least one complete item
var q, q^{\prime} : set of item;
Q_{q} : set of set of item;
δ_{d} : set of item $\times\left(V_{N} \cup V_{T}\right) \rightarrow$ set of item;
function Start: set of item; return $\left(\left\{\left[S^{\prime} \rightarrow . S\right]\right\}\right)$; function Closure(s : set of item) : set of item;
$(* \varepsilon$-Succ states of algorithm NFSM \rightarrow DFSM $*$)
begin $q:=s$;
while exists $[X \rightarrow \alpha . Y \beta]$ in q and $Y \rightarrow \gamma$ in P and $[Y \rightarrow . \gamma]$ not in q do add $[Y \rightarrow . \gamma]$ to q
od;
return(q)
end ;
function $\operatorname{Succ}\left(s:\right.$ set of item, $\left.Y: V_{N} \cup V_{T}\right)$: set of item; return $(\{[X \rightarrow \alpha Y . \beta] \mid[X \rightarrow \alpha . Y \beta] \in s\}) ;$
begin
$Q_{d}:=\{\operatorname{Closure}($ Start $)\} ;(*$ start state $*)$
$\delta_{d}:=\emptyset$;
foreach q in Q_{d} and X in $V_{N} \cup V_{T}$ do
let $q^{\prime}=\operatorname{Closure}(\operatorname{Succ}(q, X))$ in
if $q^{\prime} \neq \emptyset(* X$-successor exists *)
then
if q^{\prime} not in Q_{d} (* new state created $\left.{ }^{*}\right)$ then $Q_{d}:=Q_{d} \cup\left\{q^{\prime}\right\}$
fi;

$$
\delta_{d}:=\delta_{d} \cup\left\{q \xrightarrow{X} q^{\prime}\right\}(* \text { new transition } *)
$$

fi
tel
od
end

LR(k)-Grammars

G is $\operatorname{LR}(k)$-Grammar iff in each RMD
$S^{\prime}=\alpha_{0} \Longrightarrow \alpha_{1} \underset{r m}{\Longrightarrow} \alpha_{2} \cdots \underset{r m}{\Longrightarrow} \alpha_{m}=v$
and in each RSF $\alpha_{i}=\gamma \beta w$ the handle, β, can be identified by regarding the prefix $\gamma \beta$ of α_{i} and at most k symbols after the handle, β.

LR(k)-Grammars

G is $\operatorname{LR}(k)$-Grammar iff in each RMD
$S^{\prime}=\alpha_{0} \underset{r m}{\Longrightarrow} \alpha_{1} \underset{r m}{\Longrightarrow} \alpha_{2} \cdots \underset{r m}{\Longrightarrow} \alpha_{m}=v$
and in each RSF $\alpha_{i}=\gamma \beta w$ the handle, β, can be identified by regarding the prefix $\gamma \beta$ of α_{i} and at most k symbols after the handle, β. I.e., the splitting of α_{i} into $\gamma \beta w$ and the production $X \rightarrow \beta$, such that $\alpha_{i-1}=\gamma X_{w}$, is uniquely determined by $\gamma \beta$ and $k: w$.

LR(k)-Grammars

Definition: $A \operatorname{cfg} G$ is an $\operatorname{LR}(k)$-Grammar, iff
$S^{\prime} \underset{r m}{*} \alpha X w \underset{r m}{\Longrightarrow} \alpha \beta w$ and
$S^{\prime} \underset{r m}{*} \gamma Y_{x} \underset{r m}{\Longrightarrow} \alpha \beta y$ and
$k: w=k: y$ implies that $\alpha=\gamma$ and $X=Y$ and $x=y$.

Example 1

$C f g G_{n L L}$ with the productions
$S \rightarrow A \mid B$
$A \rightarrow a A b \mid 0$
$B \quad \rightarrow \quad a B b b \mid 1$

- $L(G)=\left\{a^{n} 0 b^{n} \mid n \geq 0\right\} \cup\left\{a^{n} 1 b^{2 n} \mid n \geq 0\right\}$.
- $G_{n L L}$ is not $\operatorname{LL}(k)$ for arbitrary k, but $G_{n L L}$ is LR(0)-grammar.
- The RSFs of $G_{n L L}$ (handle)
- $S, \underline{A}, \underline{B}$,
- $a^{n} a B b b b^{2 n}, a^{n} a A b b^{n}$.
- $a^{n} a \underline{0} b b^{n}, a^{n} a \underline{1} b b b^{2 n}$.

Example 1

$\mathrm{Cfg} G_{n L L}$ with the productions
$S \rightarrow A \mid B$
$A \rightarrow a A b \mid 0$
$B \quad \rightarrow \quad a B b b \mid 1$

- $L(G)=\left\{a^{n} 0 b^{n} \mid n \geq 0\right\} \cup\left\{a^{n} 1 b^{2 n} \mid n \geq 0\right\}$.
- $G_{n L L}$ is not $\operatorname{LL}(k)$ for arbitrary k, but $G_{n L L}$ is $\operatorname{LR}(0)$-grammar.
- The RSFs of $G_{n L L}$ (handle)
- $S, \underline{A}, \underline{B}$,
- $a^{n} a B b b b^{2 n}, a^{n} \underline{a} A b b^{n}$,
- $a^{n} a \underline{0} b b^{n}, a^{n} a \underline{1} b b b^{2 n}$.

Example 1 (cont'd)

- Only $a^{n} a A b b^{n}$ and $a^{n} a B b b b^{2 n}$ each allow 2 different reductions.
- reduce $\overbrace{a^{n}} \overbrace{a A b} b^{n}$ to $a^{n} A b^{n}$: part of a RMD $S \underset{r m}{*} a^{n} A b^{n} \underset{r m}{\Longrightarrow} a^{n} a A b b^{n}$,
- reduce $a^{n} a A b b^{n}$ to $a^{n} a S b b^{n}$: not part of any RMD.
- The prefix a^{n} of $a^{n} A b^{n}$ uniquely determines, whether
- A is the handle ($n=0$), or
- whether $a A b$ is the handle $(n>0)$.
- The RSFs $a^{n} B b^{2 n}$ are treated analogously.

Example 2

$\mathrm{Cfg} G_{1}$ with
$S \rightarrow a A c$
$A \rightarrow A b b \mid b$

- $L\left(G_{1}\right)=\left\{a b^{2 n+1} c \mid n \geq 0\right\}$
- G_{1} is $L R(0)$-grammar.

Example 2

$\mathrm{Cfg} G_{1}$ with
$S \rightarrow a A c$
$A \rightarrow A b b \mid b$

- $L\left(G_{1}\right)=\left\{a b^{2 n+1} c \mid n \geq 0\right\}$
- G_{1} is $\operatorname{LR}(0)$-grammar.

RSF $\overbrace{a}^{\gamma} \overbrace{A b b}^{\beta} b^{2 n} c$: only legal reduction is to $a A b^{2 n} c$, uniquely determined by the prefix $a A b b$.
RSF $\overbrace{a}^{\gamma} \overbrace{b}^{\beta} b^{2 n} c: b$ is the handle, uniquely determined by the prefix $a b$.

Example 3

$\mathrm{Cfg} G_{2}$ with
$S \rightarrow a A c$
$A \rightarrow b b A \mid b$.

- $L\left(G_{2}\right)=L\left(G_{1}\right)$
- G_{2} is LR(1)-grammar.
- Critical RSF $a b^{n} w$.
- $1: w=b$ implies, handle in w;
- $1: w=c$ implies, last b in b^{n} is handle.

Example 3

$\mathrm{Cfg} G_{2}$ with
$S \rightarrow a A c$
$A \rightarrow b b A \mid b$.

- $L\left(G_{2}\right)=L\left(G_{1}\right)$
- G_{2} is $\operatorname{LR}(1)$-grammar.
- Critical RSF $a b^{n} w$.
- $1: w=b$ implies, handle in w;
- $1: w=c$ implies, last b in b^{n} is handle.

Example 4
$\mathrm{Cfg} G_{3}$ with $S \rightarrow a A c \quad A \rightarrow b A b \mid b$.
$\quad-L\left(G_{3}\right)=L\left(G_{1}\right)$

- G_{3} is not $\operatorname{LR}(k)$-grammar for arbitrary k.

Choose an arbitrary k.
Regard two RMDs
$S \xlongequal[r m]{*} a b^{n} A b^{n} c \underset{r m}{\Longrightarrow} a b^{n} b b^{n} c$
$S \xlongequal[r m]{*} a b^{n+1} A b^{n+1} c \underset{r m}{\Longrightarrow} a b^{n+1} b b^{n+1} c \quad$ where $n \geq k$
Choose $\alpha=a b^{n}, \beta=b, \gamma=a b^{n+1}, w=b^{n} c, y=b^{n+2} c$.
It holds $k: w=k: y=b^{k}$.
$\alpha \neq \gamma$ implies that G_{3} is not an $\operatorname{LR}(k)$-grammar.

Example 4

$\mathrm{Cfg} G_{3}$ with $S \rightarrow a A c \quad A \rightarrow b A b \mid b$.

- $L\left(G_{3}\right)=L\left(G_{1}\right)$,
- G_{3} is not $\operatorname{LR}(k)$-grammar for arbitrary k.

Choose an arbitrary k.
Regard two RMDs
$S \xlongequal[r m]{*} a b^{n} A b^{n} c \underset{r m}{\Longrightarrow} a b^{n} b b^{n} c$
$S \xlongequal[r m]{*} a b^{n+1} A b^{n+1} c \underset{r m}{\Longrightarrow} a b^{n+1} b b^{n+1} c \quad$ where $n \geq k$
Choose $\alpha=a b^{n}, \beta=b, \gamma=a b^{n+1}, w=b^{n} c, y=b^{n+2} c$.
It holds $k: w=k: y=b^{k}$.
$\alpha \neq \gamma$ implies that G_{3} is not an $\operatorname{LR}(k)$-grammar.

Adding Lookahead

Lookahead will be used to resolve conflicts.

- $\left[X \rightarrow \alpha_{1} \cdot \alpha_{2}, L\right]-\operatorname{LR}(\mathrm{k})$-item, if $X \rightarrow \alpha_{1} \alpha_{2} \in P$ and $L \subseteq V_{T \#}^{\leq k}$.
- $\left[X \rightarrow \alpha_{1} \cdot \alpha_{2}\right]$ - core of $\left[X \rightarrow \alpha_{1} \cdot \alpha_{2}, L\right]$,
- L - the lookahead set of $\left[X \rightarrow \alpha_{1} \cdot \alpha_{2}, L\right]$.
- $\left[X \rightarrow \alpha_{1} . \alpha_{2}, L\right]$ is valid for a reliable prefix $\alpha \alpha_{1}$, if $S^{\prime} \# \underset{r m}{*} \alpha X w \underset{r m}{\Longrightarrow} \alpha \alpha_{1} \alpha_{2} w$ and $L=\left\{u \mid S^{\prime} \# \xlongequal[r m]{*} \alpha X w \underset{r m}{\Longrightarrow} \alpha \alpha_{1} \alpha_{2} w\right.$ and $\left.u=k: w\right\}$

The context-free items can be regarded as $\operatorname{LR}(0)$-items if [$\left.X \rightarrow \alpha_{1} . \alpha_{2},\{\varepsilon\}\right]$ is identified with $\left[X \rightarrow \alpha_{1} . \alpha_{2}\right.$].

Example from G_{0}

(1) $[E \rightarrow E+. T,\{),+, \#\}]$ is a valid $\operatorname{LR}(1)$-item for $(E+$ (2) $[E \rightarrow T .,\{*\}]$ is not a valid $\operatorname{LR}(1)$-item for any reliable prefix
Reason:
(1) $S^{\prime} \underset{r m}{*}(E) \underset{r m}{\Longrightarrow}(E+T) \underset{r m}{*}(E+T+\mathbf{i d})$ where

$$
\alpha=\left(, \alpha_{1}=E+, \alpha_{2}=T, u=+, w=+\mathbf{i d}\right)
$$

(2) The string $E *$ can occur in no RMD.

LR-Parser

Take their decisions (to shift or to reduce) by consulting

- the reliable prefix γ in the stack, actually the by γ uniquely determined state (on top of the stack),
- the next k symbols of the remaining input.
- Recorded in an action-table.
- The entries in this table are:
shift: read next input symbol; reduce $(X \rightarrow \alpha)$: reduce by production $X \rightarrow \alpha$; error: report error accept: report successful termination.

A goto-table records the transition function of the $L R_{0}(G)$.

The action- and the goto-table

Parser Table for $S \rightarrow a S b \mid \epsilon$

Action-table

state	sets of items	symbols		
		a	b	\#
0	$\left\{\begin{array}{l}{\left[S^{\prime} \rightarrow . S\right],} \\ {[S \rightarrow . a S b],} \\ [S \rightarrow .]\}\end{array}\right\}$	s		$r(S \rightarrow \epsilon)$
1	$\left\{\begin{array}{l}{[S \rightarrow a . S b],} \\ {[S \rightarrow . a S b],} \\ [S \rightarrow .]\}\end{array}\right\}$	s	$r(S \rightarrow \epsilon)$	
2	$\{[S \rightarrow a S . b]\}$		s	
3	\{[S \rightarrow aSb. $]\}$		$r(S \rightarrow a S b)$	$r(S \rightarrow a S b)$
4	$\left\{\left[S^{\prime} \rightarrow S.\right]\right\}$			accept

Goto-table

state	symbol			
	a	b	$\#$	S
	1			4
1	1			2
2		3		
3				
4				

Parsing $a a b b$

Stack	Input	Action
\$ 0	aabb\#	shift 1
\$ 01	abb\#	shift 1
\$ 011	bb\#	reduce $S \rightarrow \epsilon$
\$ 0112	$b b \#$	shift 3
\$01123	b\#	reduce $S \rightarrow a S b$
\$ 012	b\#	shift 3
\$ 0123	\#	reduce $S \rightarrow a S b$
\$ 04	\#	accept

Compressed Representation

- Integrate the terminal columns of the goto-table into the action-table.
- Combine shift entry for q and a with $\delta_{d}(q, a)$.
- Interpret action $[q, a]=$ shift p as read a and push p.

Compressed Parser table for $S \rightarrow a S b \mid \epsilon$

st.	sets of items	symbols			goto
		a	b	\#	S
0	$\left\{\begin{array}{l}{\left[S^{\prime} \rightarrow . S\right],} \\ {[S \rightarrow . a S b],} \\ [S \rightarrow .]\}\end{array}\right\}$	s1		$r S \rightarrow \epsilon$	4
1	$\left\{\begin{array}{l}{[S \rightarrow a . S b],} \\ {[S \rightarrow . a S b],} \\ [S \rightarrow .]\}\end{array}\right\}$	s1	$r S \rightarrow \epsilon$		2
2	$\{[S \rightarrow a S . b]\}$		s3		
4	$\begin{aligned} & \{[S \rightarrow a S b .]\} \\ & \left\{\left[S^{\prime} \rightarrow S .\right]\right\} \end{aligned}$		$r S \rightarrow a S b$	$\begin{gathered} r S \rightarrow a S b \\ \text { accept } \end{gathered}$	

Compressed Parser table for

$S \rightarrow A B, S \rightarrow A, A \rightarrow a, B \rightarrow a$

s	sets of items	symbols		goto		
		a	\#	A	B	S
0	$\left\{\begin{array}{l}{\left[S^{\prime} \rightarrow . S\right],} \\ {[S \rightarrow . A B],} \\ {[S \rightarrow . A],} \\ {[A \rightarrow . a]}\end{array}\right\}$	s1		2		5
1	$\{[A \rightarrow a]$.	$r A \rightarrow a$	$r A \rightarrow a$			
2	$\left\{\begin{array}{l}{[S \rightarrow A . B],} \\ {[S \rightarrow A .],} \\ {[B \rightarrow . a]}\end{array}\right\}$	s3	$r S \rightarrow A$		4	
3	$\{[B \rightarrow a]$.		$r B \rightarrow a$			
4	$\{[S \rightarrow A B]$.		$r S \rightarrow A B$			
5	$\left\{\left[S^{\prime} \rightarrow S.\right]\right\}$					

Parsing aa

Stack	Input	Action
$\$ 0$	$a a \#$	shift 1
$\$ 01$	$a \#$	reduce $A \rightarrow a$
$\$ 02$	$a \#$	shift 3
$\$ 023$	$\#$	reduce $B \rightarrow a$
$\$ 024$	$\#$	reduce $S \rightarrow A B$
$\$ 05$	$\#$	accept

Algorithm LR(1)-PARSER

type state = set of item;
var lookahead: symbol;
($*$ the next not yet consumed input symbol $*$)
S : stack of state;
proc scan;
(* reads the next symbol into lookahead *)
proc acc;
(* report successful parse; halt *)
proc err(message: string);
(* report error; halt $*$)
scan; push $\left(S, q_{d}\right)$;
forever do
case action $[t o p(S)$, lookahead] of
shift: begin push(S, goto[top(S), lookahead]);
scan
end ;
reduce $(X \rightarrow \alpha)$: begin

$$
\operatorname{pop}^{|\alpha|}(S) ; \operatorname{push}(S, \operatorname{goto}[\operatorname{top}(S), X])
$$

$$
\text { output(" } X \rightarrow \alpha \text { ") }
$$

end ;

```
        accept: acc;
        error: err("...");
    end case
```

od

Construction of LR(1)-Parsers

Classes of LR-Parsers:
canonical $L R(1)$: analyze languages of $\operatorname{LR}(1)$-grammars,
$\operatorname{SLR}(1)$: use $F O L L O W_{1}$ to resolve conflicts, size is size of $L R(0)$-parser,
$\operatorname{LALR}(1)$: refine lookahead sets compared to $F_{O L L O W}^{1}$, size is size of $L R(0)$-parser. BISON is an LALR(1)-parser generator.

LR(1)-Conflicts

Set of LR(1)-items / has a shift-reduce-conflict:
if exists at least one item $\left[X \rightarrow \alpha . a \beta, L_{1}\right] \in I$ and at least one item $\left[Y \rightarrow \gamma ., L_{2}\right] \in I$, and if $a \in L_{2}$.
reduce-reduce-conflict:
if it contains at least two items $\left[X \rightarrow \alpha ., L_{1}\right]$ and $\left[Y \rightarrow \beta ., L_{2}\right]$ where $L_{1} \cap L_{2} \neq \emptyset$.
A state with a conflict is called inadequate.

Construction of an LR(1)-Action Table

Input: set of $\operatorname{LR}(1)$-states Q without inadequate states
Output: action-table
Method:
foreach $q \in Q$ do
foreach $L R(1)$-item $[K, L] \in q$ do if $K=\left[S^{\prime} \rightarrow S\right.$. $]$ and $L=\{\#\}$
then action $[q, \#]:=$ accept
elseif $K=[X \rightarrow \alpha$.]
then foreach $a \in L$ do action[$q, a]:=\operatorname{reduce}(X \rightarrow \alpha)$
od
elseif $K=[X \rightarrow \alpha . a \beta]$
then action $[q, a]:=$ shift
fi
od
od;
foreach $q \in Q$ and $a \in V_{T}$ such that action[$\left.q, a\right]$ is undef. do $\operatorname{action}[q, a]:=$ error
od;

Computing Canonical LR(1)-States

Input: cfg G
Output: char. NFSM of a canonical LR(1)-Parser for G.
Method: The states and transitions are constructed using the functions Start, Closure and Succ.
$\operatorname{var} q, q^{\prime}$: set of item;
$\operatorname{var} Q$: set of set of item;
$\operatorname{var} \delta:$ set of item $\times\left(V_{N} \cup V_{T}\right) \rightarrow$ set of item;
function Start: set of item;
return $\left(\left\{\left[S^{\prime} \rightarrow . S,\{\#\}\right]\right\}\right) ;$

Computing Canonical LR(1)-States

function Closure(q : set of item) : set of item; begin foreach $[X \rightarrow \alpha . Y \beta, L]$ in q and $Y \rightarrow \gamma$ in P do if exist. $\left[Y \rightarrow . \gamma, L^{\prime}\right]$ in q then replace $\left[Y \rightarrow . \gamma, L^{\prime}\right]$ by $\left[Y \rightarrow . \gamma, L^{\prime} \cup \varepsilon\right.$-ffi $\left.(\beta L)\right]$ else $q:=q \cup\{[Y \rightarrow . \gamma, \varepsilon-f f(\beta L)]\}$ fi od; return (q)
end ;
function $\operatorname{Succ}\left(q\right.$: set of item, $\left.Y: V_{N} \cup V_{T}\right)$: set of item; return $(\{[X \rightarrow \alpha Y . \beta, L] \mid[X \rightarrow \alpha . Y \beta, L] \in q\})$;

Computing Canonical LR(1)-States

begin
$Q:=\{$ Closure(Start) $\} ; \quad \delta:=\emptyset ;$
foreach q in Q and X in $V_{N} \cup V_{T}$ do
let $q^{\prime}=\operatorname{Closure}(\operatorname{Succ}(q, X))$ in if $q^{\prime} \neq \emptyset(* X$-successor exists *) then
if q^{\prime} not in $Q\left({ }^{*}\right.$ new state $\left.{ }^{*}\right)$ then $Q:=Q \cup\left\{q^{\prime}\right\}$ fi;

$$
\delta:=\delta \cup\left\{q \xrightarrow{x} q^{\prime}\right\}\left(* \text { new transition }{ }^{*}\right)
$$ fi

tel
od
end

Computing Canonical LR(1)-States

- The test " q^{\prime} not in Q " uses an equality test on $\operatorname{LR}(1)$-items. [$\left.K_{1}, L_{1}\right]=\left[K_{2}, L_{2}\right]$ iff $K_{1}=K_{2}$ and $L_{1}=L_{2}$.
- The canonical $\operatorname{LR}(1)$-parser generator splits $L R(0)$-states.
- LALR(1)-parsers could be generated by
- using the equality' test $\left[K_{1}, L_{1}\right]=\left[K_{2}, L_{2}\right]$ iff $K_{1}=K_{2}$.
- and replacing an existing state $q^{\prime \prime}$ by a state, in which equal' items $\left[K_{1}, L_{1}\right] \in q^{\prime}$ and $\left[K_{2}, L_{2}\right] \in q^{\prime \prime}$ are merged to new items $\left[K_{1}, L_{1} \cup L_{2}\right]$.

Example from G_{0}

$$
\begin{aligned}
& S_{0}^{\prime}=\text { Closure(Start) } \\
& =\{[S \rightarrow . E,\{\#\}] \\
& {[E \rightarrow . E+T,\{\#,+\}] \text {, }} \\
& {[E \rightarrow . T,\{\#,+\}] \text {, }} \\
& {[T \rightarrow . T * F,\{\#,+, *\}] \text {, }} \\
& {[T \rightarrow . F,\{\#,+, *\}] \text {, }} \\
& {[F \rightarrow .(E),\{\#,+, *\}] \text {, }} \\
& [F \rightarrow . i d,\{\#,+, *\}]\} \\
& S_{6}^{\prime}=\operatorname{Closure}\left(\operatorname{Succ}\left(S_{1}^{\prime},+\right)\right) \\
& =\{[E \rightarrow E+. T,\{\#,+\}] \text {, } \\
& {[T \rightarrow . T * F,\{\#,+, *\}] \text {, }} \\
& {[T \rightarrow . F,\{\#,+, *\}] \text {, }} \\
& {[F \rightarrow .(E),\{\#,+, *\}] \text {, }} \\
& [F \rightarrow . \text { id, }\{\#,+, *\}]\} \\
& S_{9}^{\prime}=\operatorname{Closure}\left(\operatorname{Succ}\left(S_{6}^{\prime}, T\right)\right) \\
& =\{[E \rightarrow E+T .,\{\#,+\}] \text {, } \\
& [T \rightarrow T . * F,\{\#,+, *\}]\} \\
& S_{1}^{\prime}=\operatorname{Closure}\left(\operatorname{Succ}\left(S_{0}^{\prime}, E\right)\right) \\
& =\{[S \rightarrow E .,\{\#\}] \text {, } \\
& [E \rightarrow E .+T,\{\#,+\}]\} \\
& S_{2}^{\prime}=\operatorname{Closure}\left(\operatorname{Succ}\left(S_{0}^{\prime}, T\right)\right) \\
& =\{[E \rightarrow T .,\{\#,+\}] \text {, } \\
& [T \rightarrow T . * F,\{\#,+, *\}]\}
\end{aligned}
$$

Inadequate $\mathrm{LR}(0)$-states S_{1}, S_{2} und S_{9} are adequate after adding lookahead sets.
S_{1}^{\prime} shifts under "+", reduces under "\#".
S_{2}^{\prime} shifts under " $*$ ", reduces under " $\#$ " and " + ",
S_{9}^{\prime} shifts under "*", reduces under "\#" and " + ".

Non-canonical LR-Parsers

$\operatorname{SLR}(1)-$ and $\operatorname{LALR}(1)-$ Parsers are constructed by

1. building an $\operatorname{LR}(0)$-parser,
2. testing for inadequate $L R(0)$-states,
3. extending complete items by lookahead sets,
4. testing for inadequate $\mathrm{LR}(1)$-states.

The lookahead set for item $[X \rightarrow \alpha . \beta]$ in q is denoted $L A(q,[X \rightarrow \alpha . \beta])$
The function $L A: Q_{d} \times I t_{G} \rightarrow 2^{V_{T} \cup\{\#\}}$ is differently defined for $\operatorname{SLR}(1)\left(L A_{S}\right)$ und $\operatorname{LALR}(1)\left(L A_{L}\right)$.
$\operatorname{SLR}(1)$ - and $\operatorname{LALR}(1)-$ Parsers have the size of the $\operatorname{LR}(0)$-parser, i.e., no states are split.

Constructing SLR(1)-Parsers

- Add $L A_{S}(q,[X \rightarrow \alpha])=.F O L L O W_{1}(X)$ to all complete items;
- Check for inadequate $\operatorname{SLR}(1)$-states.
- $\operatorname{Cfg} G$ is $\operatorname{SLR}(1)$ if it has no inadequate $\operatorname{SLR}(1)$-states.

Example from G_{0} :
Extend the complete items in the inadequate states S_{1}, S_{2} and S_{9} by FOLLOW_{1} as their lookahead sets.

$$
\begin{aligned}
& S_{1}^{\prime \prime}=\{\quad[S \rightarrow E .,\{\#\}], \quad \text { conflict removed, } \\
& [E \rightarrow E .+T]\} \quad "+" \text { is not in }\{\#\} \\
& S_{2}^{\prime \prime}=\{\quad[E \rightarrow T .,\{\#,+,)\}], \quad \text { conflict removed, } \\
& [T \rightarrow T . * F]\} \quad " * " \text { is not in }\{\#,+,)\} \\
& S_{9}^{\prime \prime}=\{\quad[E \rightarrow E+T .,\{\#,+,)\}] \text {, conflict removed, } \\
& [T \rightarrow T . * F]\} \quad " * " \text { is not in }\{\#,+,)\} \\
& G_{0} \text { is an } \operatorname{SLR}(1) \text {-grammar. }
\end{aligned}
$$

A Non-SLR(1)-Grammar

$$
\begin{array}{lll}
S^{\prime} & \rightarrow S \\
S & \rightarrow & L=R \mid R \\
L & \rightarrow & * R \mid \text { id } \\
R & \rightarrow & L
\end{array}
$$

Slightly abstracted form of the C-assignment.

States of the LR-DFSM as sets of items

$$
\begin{aligned}
& S_{0}=\left\{\quad\left[S^{\prime} \rightarrow . S\right], \quad S_{5}=\{\quad[L \rightarrow \text { id. }]\}\right. \\
& {[S \rightarrow . L=R] \text {, }} \\
& {[S \rightarrow . R], \quad S_{6}=\{\quad[S \rightarrow L=. R],} \\
& {[L \rightarrow . * R] \text {, }} \\
& {[L \rightarrow . i d] \text {, }} \\
& [R \rightarrow . L]\} \\
& {[R \rightarrow . L] \text {, }} \\
& {[L \rightarrow . * R] \text {, }} \\
& [L \rightarrow . i d]\} \\
& S_{1}=\left\{\quad\left[S^{\prime} \rightarrow S .\right]\right\} \quad S_{7}=\{\quad[L \rightarrow * R .]\} \\
& S_{2}= \begin{cases}{[S \rightarrow L .=R], \quad S_{8}=\{\quad[R \rightarrow L .]\}} \\
& [R \rightarrow L .]\}\end{cases} \\
& S_{3}=\{[S \rightarrow R .]\} \\
& S_{4}=\{\quad[L \rightarrow * . R], \\
& {[R \rightarrow . L] \text {, }} \\
& {[L \rightarrow . * R],} \\
& \text { [} L \rightarrow . \text { id] }\}
\end{aligned}
$$

S_{2} is the only inadequate $\operatorname{LR}(0)$-state.
Extend $[R \rightarrow L.] \in S_{2}$ by $\operatorname{FOLLOW}_{1}(R)=\{\#,=\}$ does not remove the

LALR(1)-Parsers

$\operatorname{SLR}(1): \operatorname{LA} A_{S}(q,[X \rightarrow \alpha])=$.

$$
\left\{a \in V_{T} \cup\{\#\} \mid S^{\prime} \# \xlongequal{*} \beta X a \gamma\right\}=\operatorname{FOLLOW}_{1}(X)
$$

$\operatorname{LALR}(1): \operatorname{LA} A_{L}(q,[X \rightarrow \alpha])=$. $\left\{a \in V_{T} \cup\{\#\} \mid S^{\prime} \# \underset{r m}{*} \beta X a w\right.$ and $\left.\delta_{d}^{*}\left(q_{d}, \beta \alpha\right)=q\right\}$ Lookahead set $L A_{L}(q,[X \rightarrow \alpha]$.$) depends on the$ state q.

- Add $L A_{L}(q,[X \rightarrow \alpha]$.$) to all complete items;$
- Check for inadequate $\operatorname{LALR}(1)$-states.
- Cfg G is $\operatorname{LALR}(1)$ if it has no inadequate $\operatorname{LALR}(1)$-states.
- Definition is not constructive.
- Construction by modifying the LR(1)-Parser Generator, merging items with identical cores.

The Size of $\operatorname{LR}(1)$ Parsers

The number of states of canonical and non-canonical $\operatorname{LR}(1)$ parsers for Java and C:

	C	Java
$\operatorname{LALR}(1)$	400	600
$\operatorname{LR}(1)$	10000	12000

Non-SLR-Example

Grammar is $\operatorname{LALR}(1)$-grammar.

Interesting Non $L R(1)$ Grammars

- Common "derived" prefix

$$
\begin{aligned}
A & \rightarrow B_{1} a b \\
A & \rightarrow B_{2} a c \\
B_{1} & \rightarrow \epsilon \\
B_{2} & \rightarrow \epsilon
\end{aligned}
$$

- Optional non-terminals

$$
\begin{aligned}
S t & \rightarrow \text { OptLab St } \\
\text { OptLab } & \rightarrow i d: \\
\text { OPtlab } & \rightarrow \epsilon \\
S t^{\prime} & \rightarrow i d:=E x p
\end{aligned}
$$

- Ambiguous:
- Ambiguous arithmetic expressions
- Dangling-else

Bison Specification

Definitions: start-non-terminal+tokens+associativity \%\%
Productions
\% \%
C-Routines

Bison Example

```
%{
int line_number = 1 ; int error_occ = 0 ;
void yyerror(char *);
#include <stdio.h>
%}
%start exp
%left '+'
%left '*'
%right UMINUS
%token INTCONST
%%
exp: exp '+' }\operatorname{exp { $$ = $1 + $3 ;}
    | exp '*' exp { $$ = $1 * $3 ;}
    | ,_' exp %prec UMINUS { $$ = - $2 ; }
    | '(' exp ')' { $$ = $2 ; }
    | INTCONST
    ;
%%
void yyerror(char *message)
{ fprintf(stderr, "%s near line %ld. \n", message, line_number);
    error_occ=1; }
```


Flex for the Example

```
%{
#include <math.h>
#include "calc.tab.h"
extern int line_number;
%}
Digit [0-9]
%%
{Digit}+
\n {line_number++ ; }
[\t]+
;
{return(*yytext); }
%%
```

