
Reinhard Wilhelm, Helmut Seidl, Sebastian Hack

Compiler Design

Syntactic and Semantic Analysis

November 11, 2011

Springer

Contents

1 The Structure of Compilers .. . 1
1.1 Subtasks of compilation .. 2
1.2 Lexical Analysis .. 2
1.3 The Screener .. 3
1.4 Syntactic Analysis .. 4
1.5 Semantic Analysis .. 5
1.6 Machine-Independent Optimization 5
1.7 Memory Allocation .. 6
1.8 Generation of the Target Program .. 6
1.9 Specification and Generation of Compiler Components 8
1.10 Literature .. 9

2 Lexical Analysis 11
2.1 The Task of Lexical Analysis .. 11
2.2 Regular Expressions and Finite-State Machines 12

2.2.1 Words and Languages 12
2.3 Language for the Specification of Lexical Analyzers 23

2.3.1 Character classes .. 23
2.3.2 Non-recursive Parentheses. .. 24

2.4 Scanner Generation .. 24
2.4.1 Character Classes .. 24
2.4.2 An Implementation of theuntil-Construct . 25
2.4.3 Sequences of regular expressions 26
2.4.4 The Implementation of a Scanner 28

2.5 The Screener .. 29
2.5.1 Scanner States .. 30
2.5.2 Recognizing Reserved Words .. 31

2.6 Exercises .. 32
2.7 Literature .. 34

3 Syntactic Analysis. 35
3.1 The Task of Syntactic Analysis .. 35
3.2 Foundations .. 37

3.2.1 Context-free Grammars .. 37
3.2.2 Productivity and Reachability of Nonterminals 42
3.2.3 Pushdown Automata 45
3.2.4 The Item-Pushdown Automaton to a Context-Free Grammar 47
3.2.5 first- andfollow-Sets 51
3.2.6 The Special Casefirst1 andfollow1 . 56
3.2.7 Pure Union Problems .. 58

VI Contents

3.3 Top-down-Syntax Analysis 60
3.3.1 Introduction .. 60
3.3.2 LL(k): Definition, Examples, and Properties 62
3.3.3 Left Recursion .. 66
3.3.4 StrongLL(k) Parsers 69
3.3.5 LL Parsers for Right-regular Context-free Grammars .. 71

3.4 Bottom-up Syntax Analysis .. 79
3.4.1 Introduction .. 79
3.4.2 LR(k) Parsers 80
3.4.3 LR(k): Definition, Properties, and Examples 89
3.4.4 Fehlerbehandlung inLR parsern . 98

3.5 Literaturhinweise .. 104
3.6 "Ubungen .. 104

4 Semantic Analysis. 109
4.1 Aufgabe der semantischen Analyse 109

4.1.1 G"ultigkeits- und Sichtbarkeitsregeln 113
4.1.2 "Uberpr"ufung der Kontextbedingungen 117
4.1.3 "Uberladung von Bezeichnern .. 121

4.2 Typinferenz .. 124
4.3 Attributgrammatiken .. 143

4.3.1 Die Semantik einer Attributgrammatik 146
4.3.2 Einige Attributgrammatiken .. 147

4.4 Die Generierung von Attributauswertern 153
4.4.1 Bedarfsgetriebene Auswertung der Attribute 153
4.4.2 Statische Vorberechnungen für Attributauswerter . .. 154
4.4.3 Besuchsgesteuerte Attributauswertung 160
4.4.4 Parsergesteuerte Attributauswertung 164

4.5 "Ubungen .. 170
4.6 Literaturhinweise .. 171

Literatur .. 173

References. .. 173

1

The Structure of Compilers

Our series of books treats the compilation of higher programming languages into the machine lan-
guages of virtual or real computers. Such compilers are large, complex software systems. Realizing
large and complex software systems is a difficult task. What is special about compilers such that they
can be even implemented as a project accompanying a compilercourse? A decomposition of the task
into subtasks with clearly defined functionalities and clean interfaces between them makes this, in fact,
possible. This is true about compilers; there is a more or less standard conceptual compiler structure
composed of components solving a well-defined subtask of thecompilation task. The interfaces be-
tween the components are representations of the input program.

The compiler structure described in the following is aconceptualstructure. i.e. it identifies the
subtasks of the translation of asourcelanguage into atarget language and defines interfaces between
the components realizing the subtasks. The concrete architecture of the compiler is then derived from
this conceptual structure. Several components might be combined if the realized subtasks allow this.
But a component may also be split into several components if the realized subtask is very complex.

A first attempt to structure a compiler decomposes it into three components executing three consec-
utive phases:

1. Theanalysis phase, realized by theFrontend. It determines the syntactic structure of the source
program and checks whether the static semantic constraintsare satisfied. The latter contain the
type constraints in languages with static type systems.

2. Theoptimizationandtransformationphase, performed by what is often called theMiddleend. The
syntactically analysed and semantically checks program istransformed bysemantics-preserving
transformations. These transformations mostly aim at improving the efficiency of the program by
reducing the execution time, the memory consumption, or theconsumed energy. These transforma-
tions are independent of the target architecture and mostlyalso independent of the source language.

3. Thecode generation and the machine-dependent optimizationphase, performed by theBackend.
The program is being translated into an equivalent program in the target language. Machine-
dependent optimizations might be performed, which exploitpeculiarities of the target architecture.

This coarse compiler structure splits it into a first phase, which depends on the source language, a third
phase, which depends only on the target architecture, and a second phase, which is mostly independent
of both. This structure helps to adapt compiler components to new source languages and to new target
architectures.

The following sections present these phases in more detail,decompose them further, and show
them working on a small running example. This book describesthe analysis phase of the compiler.
The transformation phase is presented in much detail in the volume Analysis and Transformation.
The volumeCode Generation and Machine-oriented Optimizationcovers code generation for a target
machine.

2 1 The Structure of Compilers

1.1 Subtasks of compilation

Fig. 1.1 shows a conceptual compiler structure. Compilation is decomposed into a sequence of phases.
The analysis phase is further split into subtasks as this volume is concerned with the analysis phase.
Each component realizing such a subtask receives a representation of the program as input and delivers
another representation as output. The format of the output representation may be different, e.g. when
translating a symbol sequence into a tree, or it may be the same. In the latter case, the representation
will in general be augmented with newly computed information. The subtasks are represented by boxes
labeled with the name of the subtask and maybe with the name ofthe module realizing this subtask.

We now walk through the sequence of subtasks step by step, characterize their job, and describe the
change in program representation. As a running example we consider the following program fragment:

int a, b;

a = 42;

b = a ∗ a− 7;

where′ =′ denotes the assignment operator.

lexikalische Analyse

Scanner

Sieben

Sieber

syntaktische Analyse

Parser

semantische Analyse

Zielprogramm

Quellprogramm als Zeichenfolge

Symbolfolge

dekorierte Symbolfolge

Syntaxbaum

dekorierter Syntaxbaum

E
S
E
H
T
N
Y
S

N
A

Y
S
E

A

L

Optimierung

Codeerzeugung

Fig. 1.1. Structure of a compiler together with the program representations during the analysis phase.

1.2 Lexical Analysis

The component performing lexical analysis of source programs is often called thescanner. This com-
ponen reads the source program represented a sequence of characters mostly from a file. It decomposes
this sequence of characters into a sequence of lexical unitsof the programming language. These lexical
units are calledsymbols. Typial lexical units are keywords such asif , else, while or switch and spe-
cial charactes and character combinations such as=,==, ! =, <=, >=, <,>, (,), [,], {, } or comma
and semicolon. These need to be recognized and converted into corresponding internal representations.
The same holds for reserved identifiers such as names of basictypes int, float, double, char, bool

or string, etc. Further symbols are identifier and constants. Examples for identifiers arevalue42, abc,

1.3 The Screener 3

Myclass, x, while the character sequences42, 3.14159 and′′HalloWorld!′′ represent constants. Some-
thing special to note is that there are, in principle, arbitrarily many such symbols. However, they can be
categorized into finitely manyclasses. A symbol class consists of symbols that are equivalent as far as
the syntactic structure of programs is concerned. Identifiers are an example of such a class. Within this
class, there may be subclasses such as type constructors in OCAML or variables in PROLOG, which are
written in capital letters. In the class of constants,int-constants can be distinguished from floating-point
constants andstring-constants.

The symbols we have considered so far bear semantic interpretations and need, therefore, be consid-
ered in code generation. However, there are symbols withoutsemantics. Two symbols need a separator
between them if their concatenation would also form a symbol. Such a separator can be a blank, a new-
line, or an indentation or a sequence of such characters. Such so-called white space can also be inserted
into a program to make visible the structure of the program.

Another type of symbols, without meaning for the compiler, but helpful for the human reader, are
comments and can be used by software development tools. A similar type of symbols arecompiler
directives(pragmas). Such directives may tell the compiler to include particular libraries or influence
the memory management for the program to be compiled.

The sequence of symbols for the example program might look asfollows:

Int(′′int ′′) Sep(′′ ′′) Id(′′a′′) Com(′′,′′) Sep(′′ ′′) Id(′′b′′) Sem(′′;′′) Sep(′′\n′′)

Id(′′a′′) Bec(′′=′′) Intconst(′′42′′) Sem(′′;′′) Sep(′′\n′′)

Id(′′b′′) Bec(′′=′′) Id(′′a′′) Mop(′′∗′′) Id(′′a′′) Aop(′′−′′) Intconst(′′7′′) Sem(′′;′′) Sep(′′\n′′)

To increase readability, the sequences was brolen into lines according to the original program structure.
Each symbol is represented with its symbol class and the substring representing it in the program. More
information may be added such as the position of the string inthe input.

1.3 The Screener

The scanner delivers a sequence of symbols to the screener. These are substrings of the program text
labeled with their symbol classes. It is the task of the screener to further process this sequence. Some
symbols it will eliminate since they have served their prupose as separators. Others it will transform into
a different representation. More precisely, it will perform the following actions, specific for different
symbol classes:

Reserved symbols:These are typically identifiers, but have a special meaning in the programming lan-
guage. e.g.begin, end, var, int etc.

Separators and comments:Sequences of blanks and newlines serve as separators between symbols.
They are of not needed for further processing of the program and can therefore be removed.. An
exception to this rule are some functional languages, e.g. HASKELL, where indentation is used to
express program nesting. Comments will also not be needed later and can be removed.

Pragmas: Compiler directives (pragmas) are not part of the program. They will separately passed on
to the copmpiler.

Other types of symbols are typically preserved, but their textual representation may be converted into
some more efficient internal representation.

Constants:The sequence of digits as representation of number constants is converted to a binary rep-
resentation.String-constants are stored into an allocated object. In JAVA implementations, these
objects are stored in a dedicated data structure, theString Pool. The String Pool is available to the
program at run-time.

Identifier: Compilers usually do not work with identifiers represented as string objects. This repre-
sentation would be too inefficient. Rather, identifiers are coded as unique numbers. The compiler
needs to be able to access the external representation of identifiers, though. For this purpose, the
identifiers are kept in a data structure, which can be efficiently addressed by their codes.

3

Syntactic Analysis

3.1 The Task of Syntactic Analysis

The parser realizes thesyntactic analysisof programs. Its input is a sequence of symbols as produced
by the cmbination of scanner and screener. It is its job to identify the syntactic structure in this sequence
of symbols, that is the composition of syntactic units from other units.

Syntactic units in imperative languages are variables, expressions, declarations, statements and se-
quences of statements. Functional languages have variables, expressions, patterns, definitions and dec-
larations. Logic languages such as [sc Prolog have variables, terms, goals, and clauses.

The parser represents the syntactic structure of the input program in a data structure that allows
the subsequent phases of the compiler to access the individual program components. One possible
representation is theparse tree. The parse tree maz later be decorated with more informationabout the
program. Transformation may be applied to it, and code for a target machine can be generated from it.

For some languages, the compilation task is so simple that programs can be translated in one pass
over the program text. In this case, the parser can avoid the construction of the intermediate represen-
tation. The parser acts as main function calling routines for semantic analysis and for code generation.

Many programs that are presented to a compiler contain errors, many of them syntax errors. Syntax
errors consist in violations of the rules for forming valid programs. The compiler is expected to ade-
quately react to errors. It should at least attempt to locatethe error precisely. However, often only the
localization of the error symptom is possible, not the localization of the error itself. The error symptom
is the position where no continuation of the syntactic analysis is possible. The compiler should not give
up after the first error found, but continue to analyze the rest of the program and maybe detect more
errors.

The syntactic structure of the programs written in some programming language can be described by
a context-free grammar. There exist methods to automatically generate a parser from such a description.
For efficiency and unambiguity reasons, parsing methods areoften restricted to deterministically ana-
lyzable context-free languages. For these, several automatic methods for parser generation exist. The
parsing methods used in practice fall into two categories,top-down- andbottom-up-parsing methods.
Both read the input from left to right. The differences in theway they work can be best made clear by
regarding how they construct parse trees.

Top-down parsersstart the syntactic analysis of a given program and the construction of the parse
tree with the start symbol of the grammar and with the root of the parse tree labelled with that symbol.
Top-down parser are calledpredictiveparser since they make predictions about what they expect tofind
next in the input. They then attempt to verify the predictionby comparing it with the remaining input.
The first prediction is the start symbol of the grammar. It says that the parser expects to find a word for
the start symbol. Let us assume that a prefix of the predictionis already confirmed. Then there are two
cases:

• The non-confirmed part of the prediction starts with a nonterminal. The top-down parser will then
refine its prediction by selecting one of the alternatives ofthis nonteminal.

36 3 Syntactic Analysis

• The non-confirmed part of the prediction starts with a terminal symbol. The top-down parser will
then compare this with the next input symbol. If they agree itmeans that another symbol of the
prediction is confirmed. Otherwise, the parser has detectedan error.

The top-down parser terminates successfully when the wholeinput has been predicted and confirmed.
Bottom-up parsersstart the syntactic analysis of a given program and the construction of the parse

tree with the input, that is, the given program. They attemptto discover the syntactic structure of longer
and longer prefixes of the input program. To do this they attempt to replace occurrences of right sides
of productions by their left-side nonterminals. Such a replacement is called areduction. If the parser
cannot perform a reduction if does ashift, that is, it reads the next input symbol. These are the only
two actions a bottom-up parser can perform. It is, therefore, calledshift-reduceparser. The analysis
terminates successfully when the parser has reduced the input program by a sequence ofshift and
reducesteps to the start symbol of the grammar.

The Treatment of Syntax Errors

Most programs that are submitted to a compiler are erroneous. Many contain syntax errors. The com-
piler should, therefore, treat thenormalcase, namely the erroneous program adequately. Lexical errors
are rather local. Syntax errors, for instance in the parenthesis structure of a program, are often difficult
to diagnose. This chapter covers required and possible reactions to syntax errors by the parser. There
are essentially four different types of reaction to syntax errors:

1. The error is localized and reported;
2. The error is diagnozed;
3. The error is corrected;
4. The parser gets back into a state in which it can possibly detect further errors.

The first alternative is absolutely required. Later stages of the compiler assume that they are only given
syntactically correct programs in the form of syntax trees.The programmer needs to be informed about
syntax errors in his programs. There exist, however, two significant problems: Firstly, further syntax
errors can remain undetected in the vicinity of a detected error. Second, the parser detects an error when
it has no continuation out of its actual configuration under the next input symbol. This is, in general,
only the errorsymptom, not the error itself.

Example 3.1.1Consider the following erroneous assignment statement:

a = a ∗ (b+ c ∗ d ;

↑

error symptom:′)′ is missing

There are several potential errors: Either there is an extraopen parenthesis, or a closing parenthesis is
missing afterc or afterd. These three corrections lead to programs with different meaning. ⊓⊔

At errors of extra or missing parentheses such as {, },begin, end, if, etc., the position of the
error and the position of the error-symptom can be far apart.The practically relevant parsing methods,
LL(k)- andLR(k) parsing, presented in the following sections, have theviable-prefixproperty.

When the parser for a context-free grammarG has analyzed the prefixu of a word without announcing
an error then there exists a wordw such thatuw is a word ofG.

Parsers possessing this property report error and error symptoms at the earliest possible time. We have
said above that, in general, the parser will only discover anerror symptom, not the error itself. Still,
we will speak oferrors in the following. In this sense, the discussed parsers perform the first two listed
actions: they report and try to diagnose errors.

Example 3.1.1 shows that the second action is not easily done.
The parser can attempt a diagnosis of the error symptom. It should at least provide the following

information:

3.2 Foundations 37

• the psition of the error in the program,
• a description of the parser configuration, i.e., the currentstate, the expected symbol, and the found

symbol.

For the third listed action, the correction of an error, the parser would need to know the intention of
the programmer. This is, in general, impossible. Somewhat more realistic is the search for a globally
optimal error correction. To realize this, the parser is given the capability to insert or delete symbols in
the input word. Theglobally optimalerror correction for an erroneous input wordw is a wordw′ that
is obtained fromw by a minimal number of such insertions and deletions. Such methods have been
proposed in the literature, but have not been used in practice due to the necessary effort.

Instead, most parsers do only local corrections to have the parser move from the error configuration
to a new configuration in which it can at least read the next input symbol. This prevents the parser from
going into an endless loop while trying to repair an error.

The Structure of this Chapter

Section 3.2 presents the theoretical foundations of syntaxanalysis, context-free grammars and their
notion of derivation and pushdown automata, their acceptors. A special non-deterministic pushdown
automaton for a context-free grammar is introduced that recognizes the language defined by the gram-
mar. Deterministic top-down and bottom-up parser for the grammar are derived from this pushdown
automaton.

Sections 3.3 and 3.4 describetop-down- andbottom-upsyntax analysis. The corresponding gram-
mar classes are characterized and parser-generation methods are presented. Error handling for both
top-down and bottom-up parsers is described in detail.

3.2 Foundations

We have seen that lexical analysis is specified by regular expressions and implemented by finite-state
machines. We will now see that syntax analysis is specified bycontext-free grammars and implemented
by pushdown automata.

Regular expressions are not sufficient to describe the syntax of programming languages since they
cannotembedded recursionas they occur in the nesting of expressions, statements, andblocks.

In Sections 3.2.1 and 3.2.3, we introduce the needed notionsabout context-free grammars and
pushdown automata. Readers familiar with these notions canskip them and go directly to Section
3.2.4. In Section 3.2.4, a pushdown automaton is introducedfor a context-free grammar that accepts
the language defined by that grammar.rt.

3.2.1 Context-free Grammars

Context-free grammars can be used to describe the syntacticstructure of programs of a programming
language. The grammar describes what the elementary components of programs are and how pieces of
programs can be composed to form bigger pieces.

Example 3.2.1A section of a grammar to describe a C-like programming language might look like
follows:

38 3 Syntactic Analysis

〈stat〉 → 〈if _stat〉 |

〈while_stat〉 |

〈do_while_stat〉 |

〈exp〉 ; |

; |

{ 〈stats〉 }

〈if _stat〉 → if (〈exp〉) else 〈stat〉 |

if (〈exp〉) 〈stat〉

〈while_stat〉 → while (〈exp〉) 〈stat〉

〈do_while_stat〉 → do 〈stat〉 while (〈exp〉);

〈exp〉 → 〈assign〉 |

〈call〉 |

Id |

...

〈call〉 → Id (〈exps〉) |

〈exp〉()

〈assign〉 → Id
′=′ 〈exp〉

〈stats〉 → 〈stat〉 |

〈stats〉 〈stat〉

〈exps〉 → 〈exp〉 |

〈exps〉, 〈exp〉

The nonterminal symbol〈stat〉 generates statements. We will use the meta-character| to combine
several alternatives for one nonterminal.

According to this section of a grammar, a statement is eitherand if -statement, awhile-statement,
a do-while-statement, an expression followed by a semicolon, an emptystatement, or a sequence of
statements in parentheses.

if -statements in which theelse-part may be missing. They always start with the keywordif, fol-
lowed by an expression in parentheses, and a statement. Thisstatement may be followed by the key-
wordelse and another statement. Further productions describe howwhile- anddo-while-statements and
expressions are constructed. For expressions, only some possible alternatives are explicitly given. Other
alternatives are indicated by⊓⊔

Formally, acontext-free grammaris a quadrupleG = (VN , VT , P, S), whereVN , VT are disjoint
alphabets,VN is the set ofnonterminals, VT is the set ofterminals, P ⊆ VN × (VN ∪ VT)∗ is the finite
set ofproduction rules, andS ∈ VN is thestart symbol.

Terminal symbols (in short: terminals) are the symbols fromwhich programs are built. While we
spoke of alphabets ofcharactersin the section on lexical analysis, typically ASCII or Uni-code char-
acters, we now speak of alphabets ofsymbolsas they are returned from the scanner or the screener.
Such symbols are reserved keywords of the language, identifiers, or symbol classes comprising sets of
symbols.

The nonterminals of the grammar stand for sets of words that can be generated from them according
to the production rules of the grammar. In the example grammar 3.2.1, they are enclosed in angle brack-
ets. A production rules (in short: production)(A,α) in the relationsP describes possible replacements:
an occurrence of the left sideA in a wordβ = γ1Aγ2 can be replaced by the right sideα ∈ (VT ∪VN)∗.
In the view of atop-downparser, a new wordβ′ = γ1αγ2 is producedor derivedfrom the wordβ.

A bottom-upparser interprets the production(A,α) as a replacement of the right sideα by the left
sideA. Applying the production to a wordβ′ = γ1αγ2 reducesthis to the wordβ = γ1Aγ2.

We introduce some conventions to talk about context-free grammarsG = (VN , VT , P, S). Capital
latin letters from the beginning of the alphabet, e.g.A,B,C are used to denote nonterminals fromVN ;
capital latin letters from the end of the alphabet, e.g.X,Y, Z denote terminals or nonterminals. Small
latin letters from the beginning of the alphabet, e.g.a, b, c, . . ., stand for terminals fromVT ; small latin

3.2 Foundations 39

letters from the end of the alphabet, likeu, v, w, x, y, z, stand for terminal words, that is, elements from
V ∗

T ; small greek letters such asα, β, γ, ϕ, ψ stand for words from(VT ∪ VN)∗.
The relationP is seen as a set of production rules. Each element(A,α) of this relation is, more

intuitively, written asA→ α. All productions A→ α1, A→ α2, . . . , A→ αn for a nonterminalA
are combined to

A→ α1 | α2 | . . . | αn

. Theα1, α2, . . . , αn are called thealternativesof A.

Example 3.2.2The two grammarsG0 andG1 describe the same language:

G0 = {E, T, F}, {+, ∗, (,), Id}, P0, E) whereP0 is given by:

E → E + T | T,

T → T ∗ F | F,

F → (E) | Id

G1 = ({E}, {+, ∗, (,), Id}, P1, E) whereP1 is given by:

E → E + E | E ∗ E | (E) | Id

⊓⊔

We say, a wordϕ directly producesa wordψ according toG, written asϕ =⇒
G

ψ if ϕ = σAτ, ψ = σατ

holds for some wordsσ, τ and a productionA→ α ∈ P. A wordϕ producesa wordψ according toG,
orψ is derivablefromϕ according toG, written asϕ

∗
=⇒

G
ψ, if there is a finite sequenceϕ0, ϕ1, . . . ϕn,

(n ≥ 0) of words such that

ϕ = ϕ0, ψ = ϕn andϕi =⇒
G

ϕi+1 for all 0 ≤ i < n.

The sequenceϕ0, ϕ1, . . . , ϕn is called aderivationof ψ fromϕ according toG. A derivation of length
n is written asϕ

n
=⇒

G
ψ. The relation

∗
=⇒

G
denotes the reflexive and transitive closure of=⇒

G
.

Example 3.2.3The grammars of Example 3.2.2 have, among others, the derivations

E =⇒
G0

E + T =⇒
G0

T + T =⇒
G0

T ∗ F + T =⇒
G0

T ∗ Id + T =⇒
G0

F ∗ Id + T =⇒
G0

F ∗ Id + F =⇒
G0

Id ∗ Id + F =⇒
G0

Id ∗ Id + Id,

E =⇒
G1

E + E =⇒
G1

E ∗ E + E =⇒
G1

Id ∗ E + E =⇒
G1

Id ∗ E + Id =⇒
G1

Id ∗ Id + Id .

We conclude from these derivations thatE
∗

=⇒
G1

Id ∗ Id + Id holds as well asE
∗

=⇒
G0

Id ∗ Id + Id. ⊓⊔

The language defined bya context-free grammarG = (VN , VT , P, S) is the set

L(G) = {u ∈ V ∗
T | S

∗
=⇒

G
u}.

A wordx ∈ L(G) is called aword ofG. A wordα ∈ (VT ∪VN)∗ whereS
∗

=⇒
G

α is called asentential

form of G.

Example 3.2.4Let us consider again the grammars of Example 3.2.3. The wordId ∗ Id + Id is a word
of bothG0 andG1, sinceE

∗
=⇒
G0

Id ∗ Id + Id as well asE
∗

=⇒
G1

Id ∗ Id + Id hold. ⊓⊔

We omit the indexG in =⇒
G

when the grammar to which derivations refer is clear from thecontext.

The syntactic structure of a program, as it results from syntactic analysis, is theparse tree, which
is anordered tree, that is, a tree in which the outgoing edges of each node are ordered. The parse tree
describes a set of derivations of the program according to the underlying grammar. It, therefore, allows

40 3 Syntactic Analysis

to define the notionambiguityand to explain the differences between parsing strategies,see Sections
3.3 and 3.4. Within a compiler, the parse tree serves as theinterfaceto the subsequent compiler phases.
Most approaches to the evaluation of semantic attributes, as they are described in Chapter 4, about
semantic analysis, work on this tree structure.

LetG = (VN , VT , P, S) be a context-free grammar. Lett be an ordered tree whose inner nodes are
labeled with symbols fromVN and whose leaves are labeled with symbols fromVT ∪ {ε}. t is aparse
tree if the labelX of each inner noden of t together with the sequence of labelsX1, . . . , Xk of the
children ofn in t has the following properties:

1. X → X1 . . .Xk is a production fromP .
2. IsX1 . . .Xk = ε, thenk = 1, that is, noden has exactly one child and this child is labeled withε.
3. IsX1 . . . Xk 6= ε thenXi 6= ε for eachi.

If the root oft is labeled with nonterminal symbolA, and if the concatenation of the leaf labels yields
the terminal wordw we callt a parse tree for nonterminalA and wordw according to grammarG. If
the root is labeled withS, the start symbol of the grammar, we just callt a parse tree forw.

Example 3.2.5Fig. 3.1 shows two parse trees according to grammarG1 of Example 3.2.2 for the word
Id ∗ Id + Id . ⊓⊔

E

id

E

E

E

E

id id∗ + +∗id id

E

E

E

E

id

E

Fig. 3.1.Two syntax trees according to grammarG1 of Example 3.2.2 for the wordId ∗ Id + Id.

A syntax tree can be viewed as a representation of derivations where one abstracts from the order and
the direction,derivationor reduction, in which productions were applied. A word of the language is
calledambiguousif there exists more than one parse tree for it. Correspondingly, the grammarG is
calledambiguous, if L(G) contains at least one ambiguous word. A context-free grammar that is not
ambiguous is callednon-ambiguous.

Example 3.2.6The grammarG1 is ambiguous because the wordId ∗ Id + Id has more than one parse
tree. The grammarG0, on the other hand, is non-ambiguous.⊓⊔

The definition implies that each wordx ∈ L(G) has at least one derivation fromS. To each derivation
for a wordx corresponds a parse tree forx. Thus, each wordx ∈ L(G) has at least one parse tree.
On the other hand, to each parse tree for a wordx corresponds at least one derivation forx. Any such
derivation can be easily read off the parse tree.

Example 3.2.7The word Id + Id has the one parse tree of Fig. 3.2 according to grammarG1 . Two
different derivations result depending on the order in which the nonterminals are replaced:

E ⇒ E + E ⇒ Id + E ⇒ Id + Id

E ⇒ E + E ⇒ E + Id⇒ Id + Id

⊓⊔

3.2 Foundations 41

E

Id

E

E

Id +

Fig. 3.2. The uniquely determined parse tree for the wordId + Id.

In Example 3.2.7 we saw that—even with non-ambiguous words—several derivations might corre-
spond to one parse tree. This results from the different possibilities to chose a nonterminal in a sen-
tential form for the next application of a production. One can chose essentially two different canonical
replacement strategies, replacing the leftmost nonterminal or the rightmost nonterminal. In each case
one obtains uniquely determined derivations, namelyleftmostandrightmostderivations, resp.

A derivationϕ1 =⇒ . . . =⇒ ϕn of ϕ = ϕn from S = ϕ1 is a leftmost derivationof ϕ, denoted

asS
∗

=⇒
lm

ϕ , if in the derivation step fromϕi to ϕi+1 the leftmost nonterminal ofϕi is replaced, i.e.

ϕi = uAτ, ϕi+1 = uατ for a wordu ∈ V ∗
T and a productionA→ α ∈ P.

Similarly, we call a derivationϕ1 =⇒ . . . =⇒ ϕn arightmost derivationofϕ, denoted byS ∗
=⇒
rm

ϕ,

if the rightmost nonterminal inϕi is replaced, i.e.ϕi = σAu, ϕi+1 = σαu with u ∈ V ∗
T andA→ α ∈

P.
A sentential form that occurs in a leftmost derivation (rightmost derivation) is calledleft sentential

form (right sentential form).
To each parse tree forS there exists exactly one leftmost derivation and exactly one rightmost

derivation. Thus, there is exactly one leftmost and one rightmost derivation for each unambiguous word
in a language.

Example 3.2.8The word Id ∗ Id + Id has, according to grammarG1, the leftmost derivations

E =⇒
lm

E + E =⇒
lm

E ∗ E + E =⇒
lm

Id ∗ E + E =⇒
lm

Id ∗ Id + E =⇒
lm

Id ∗ Id + Id and

E =⇒
lm

E ∗ E =⇒
lm

Id ∗ E =⇒
lm

Id ∗ E + E =⇒
lm

Id ∗ Id + E =⇒
lm

Id ∗ Id + Id.

It has the rightmost derivations

E =⇒
rm

E + E =⇒
rm

E + Id =⇒
rm

E ∗ E + Id =⇒
rm

E ∗ Id + Id =⇒
rm

Id ∗ Id + Id und

E =⇒
rm

E ∗ E =⇒
rm

E ∗ E + E =⇒
rm

E ∗ E + Id =⇒
rm

E ∗ Id + Id =⇒
rm

Id ∗ Id + Id.

The word Id + Id has, according toG1, only one leftmost derivation, namely

E =⇒
lm

E + E =⇒
lm

Id + E =⇒
lm

Id + Id

and one rightmost derivation, namely

E =⇒
rm

E + E =⇒
rm

E + Id =⇒
rm

Id + Id.

⊓⊔

In an unambiguous grammar, the leftmost and the rightmost derivation of a word consist of the same
productions. The difference is the order of application. The questions is, can one find sentential forms
in both derivations that correspond to each other in the following way: in both derivations will, in the
next step, the same occurrence of a nonterminal be replaced?

The following lemma establishes such a relation.

42 3 Syntactic Analysis

Lemma 3.1. 1. If S
∗

=⇒
lm

uAϕ holds, then there existsψ, with ψ
∗

=⇒ u, such that for allv with

ϕ
∗

=⇒ v holdsS =⇒
rm

ψAv.

2. If S ∗
=⇒
rm

ψAv holds, then there exists aϕ with ϕ ∗
=⇒ v, such that for allu with ψ ∗

=⇒ u holds

S
∗

=⇒
lm

uAϕ. ⊓⊔

Fig. 3.3 clarifies the relation betweenϕ and v on one side andψ and u on the other side.

ϕψ
A

u v

S

Fig. 3.3. Correspondence between leftmost and rightmost derivation.

Context-free grammars that describe programming languages should be unambiguous. If this is the
case, then there exist exactly one parse tree, and one leftmost and one rightmost derivation for each
syntactically correct program.

3.2.2 Productivity and Reachability of Nonterminals

A context-free grammar might have superfluous nonterminalsand productions. Eliminating them re-
duces the size of the grammar, but doesn’t change the language. We will now introduce two properties
of nonterminals that characterize them as useful and present methods to compute the subsets of nonter-
minals that have these properties. Grammars from which all nonterminals not having these properties
are removed will be calledreduced. We will later always assume that the grammars we deal with are
reduced.

The first required property of useful nonterminals isproductivity. A nonterminalX of a context-
free grammarG = (VN , VT , P, S) is calledproductive, if there exists a derivationX

∗
=⇒

G
w for a word

w ∈ V ∗
T , or equivalently, if there exists a parse tree whose root is labeled withX .

Example 3.2.9Consider the grammarG = ({S′, S,X, Y, Z}, {a, b}, P, S′), whereP consists of the
productions :

S′ → S

S → aXZ | Y

X → bS | aY bY

Y → ba | aZ

Z → aZX

ThenY is productive and therefore alsoX,S andS′. The nonterminalZ, on the other hand, is not
productive since the only production forZ contains on occurrence ofZ on its right side. ⊓⊔

A two-level characterization of nonterminal productivityleading to an algorithm to compute it is the
following:

3.2 Foundations 43

(1) X is productive through productionp if and only ifX is the left side ofp, and if all nonterminals
on the right side ofp are productive.

(2) X is productiveif X is productive through at least one of its alternatives.

In particular,X is thereby productive if there exists a productionX → u ∈ P whose right sideu has no
nonterminal occurrences, that is,u ∈ V ∗

T . Property (1) describes the dependence of the information for
X on the information about symbols on the right side of the production forX ; property (2) indicates
how to combine the information obtained from the different alternatives forX .

We describe a method that computes for a context-free grammar G the set of all productive non-
terminals. The method uses for each productionp a countercount[p], which counts the number of
occurrences of nonterminals whose productivity is not yet known. When the counter of a productionp
is decreased to 0 all nonterminals on the right side must be productive. Therefore, also the left side of
p is productive throughp. To manage the productions whose counter has sunk to 0 the algorithm uses a
worklistW .

Further, for each nonterminalX a list occ[X] of occurrences of this nonterminal in right sides of
productions is managed:

set〈nonterminal〉 productive← ∅; // result-set

int count[production]; // counter for each production

list〈nonterminal〉 W ← [];

list〈production〉 occ[nonterminal]; // occurrences in right sides

forall (nonterminal X) occ[X]← []; // Initialization

forall (production p) { count[p]← 0;

init(p);

}

. . .

The callinit(p) of the routineinit() for a productionp, whose code we have not given, iterates over the
sequence of symbols on the right side ofp. At each occurrence of a nonterminalX the countercount[p]
is incremented, andp is added to the listocc[X]. If at the end stillcount[p] = 0 holds theninit(p) enters
productionp into the listW . This concludes the initialization.

The main iteration processes the productions inW one by one. For each productionp in W , the
left side is productive throughp and therefore productive. When, on the other hand, a nonterminalX is
newly discovered as productive, the algorithm iterates through the listocc[X] of those productions in
whichX occurs. The countercount[r] is decremented for each productionr in this list. The described
method is realized by the following algorithm:

. . .

while (W 6= []) {

X ← hd(W); W ← tl(W);

if (X 6∈ productive) {

productive ← productive ∪ {X};

forall ((r : A→ α) ∈ occ[X]) {

count[r]−−;

if (count[r] = 0) W ← A :: W ;

} // end of forall

} // end of if
} // end of while

Let us derive the run time of this algorithm. The initialization phase essentially runs once over the
grammar and does a constant amount of work for each symbol. The main iteration through the worklist

44 3 Syntactic Analysis

enters the left side of each production once into the listW and so removes it at most once from the list.
At the removal of a nonterminalsX fromW more than a constant amount of work has to be done only
whenX has not yet been marked as productive. The effort for such anX is proportional to the length of
the listocc[X]. Thesumof these lengths is bounded by the overall size of the grammarG. This means
that the total effort is linear in the size of the grammar.

To show the correctness of the procedure, we ascertain that it possesses the following properties:

• If X is entered into the setproductive in the j-th iteration of thewhile-loop, there exists a parse
tree forX of height at mostj − 1.
• For each parse tree, the root is entered intoW once.

The efficient algorithm just presented has relevance beyondits application in compiler construction.
It can be used with small modifications to computeleastsolutions ofBooleansystems of equations,
that is of systems of equations, in which the right sides are disjunctions of arbitrary conjunctions of
unknowns. In our example, the conjunctions stem from the right sides while a disjunction represents
the existence of different alternatives for a nonterminal.

The second property of a useful nonterminal is itsreachability. We call a nonterminalX reachablein
a context-free grammarG = (VN , VT , P, S), if there exists a derivationS

∗
=⇒

G
αXβ.

Example 3.2.10Consider the grammarG = ({S,U, V,X, Y, Z}, {a, b, c, d}, P, S), whereP consists
of the following productions:

S → Y

Y → Y Z | Y a | b

U → V

X → c

V → V d | d

Z → ZX

The nonterminalsS, Y, Z andX are reachable, whileU andV are not. ⊓⊔

Reachability can also be characterized in a two-level definition that leads to an algorithm:

(1) If a nonterminalX is reachable andX → α ∈ P , then each nonterminal occurring in the right side
α is reachable through this occurrence.

(2) A nonterminal is reachable if it is reachable through at least one of its occurrences.
(3) The start symbolS is always reachable.

Let rhs[X] for a nonterminalX be the set of all nonterminals that occur in the right side of productions
with left sideX . These sets can be computed in linear time. The setreachable of reachable nonterminals
of a grammar can be computed by:

set〈nonterminal〉 reachable ← ∅;

list〈nonterminal〉 W ← S :: [];

nonterminal Y ;

while (W 6= []) {

X ← hd(W); W ← tl(W);

if (X 6∈ reachable) {

reachable ← reachable ∪ {X};

forall (Y ∈ rhs[X]) W ← W ∪ {Y };

}

To reduce a grammarG, first all non-productive nonterminals are removed from thegrammar together
with all productions in which they occur. Only in a second step are the non-reachable nonterminals
eliminated, also together with the productions in which they occur. This second step is, therefore, based
on the assumption that all remaining nonterminals are productive.

3.2 Foundations 45

Example 3.2.11Let us consider again the grammar of Example 3.2.9 with the productions

S′ → S

S → aXZ | Y

X → bS | aY bY

Y → ba | aZ

Z → aZX

The set of productive nonterminals is{S′, S,X, Y }, whileZ is not productive. To reduce the grammar,
a first step removes all productions in whichZ occurs. The resulting set isP1:

S′ → S

S → Y

X → bS | aY bY

Y → ba

AlthoughX was reachable according to the original set of productionsX is no more reachable after the
first step. The set of reachable nonterminals isV ′

N = {S′, S, Y }. By removing all productions whose
left side if no longer reachable the following set of obtained:

S′ → S

S → Y

Y → ba

⊓⊔

We assume n the following that grammars are always reduced.

3.2.3 Pushdown Automata

This section treats the automata model corresponding to context-free grammars, pushdown automata.
We need to describe how to realize a compiler component that performs syntax analysis according to
a given context-free grammar. Section 3.2.4 describes sucha method. The pushdown automaton con-
structed for a context-free grammar, however, has a problem: it is non-deterministic for most grammars.
In Sections 3.3 and 3.4 we describe how for appropriate subclasses of context-free grammars the thus
constructed pushdown automaton can be modified to become deterministic.

In contrast to the finite-state machines of the preceding chapter, a pushdown automaton has an
unlimited storage capacity. It has a (conceptually) unbounded data structure, thestack, which works
according to alast-in, first-outprinciple. Fig. 3.4 shows a schematic picture of a pushdown automaton.
The reading head is only allowed to move from left to right, aswas the case with finite-state machines.
In contrast to finite-state machines, transitions of the pushdown automaton not only depend on the
actual state and the next input symbol, but also on some topmost section of the stack. A transition may
change this upper section of the stack and it may consume the next input symbol by moving the reading
head one place to the right.

Formally, apushdown automatonis a tupleP = (Q, VT , ∆, q0, F), where

• Q is a finite set ofstates,
• VT is theinput alphabet,
• q0 ∈ Q is theinitial stateand
• F ⊆ Q is the set offinal states, and
• ∆, is a finite subset ofQ+×VT ×Q

∗, thetransition relation. The transition relation∆ can be seen
as a finite partial function∆ fromQ+ × VT into the finites subsets ofQ∗.

46 3 Syntactic Analysis

control

input tape

stack

Fig. 3.4. Schematic representation of a pushdown automaton

Our definition of a pushdown automaton is somewhat unusual asit doesn’t make a distinction between
the states of the automaton and its stack symbols. It uses thesame alphabet for both. In this way, the
topmost stack symbol is interpreted as theactual state. The transition relation describes the possible
computation steps of the pushdown automaton. It lists finitely many transitions. Executing the transition
(γ, x, γ′) replaces the upper sectionγ ∈ Q+ of the stack contents by the new sequenceγ′ ∈ Q∗ of
states and readsx ∈ VT ∪ {ε} in the input. The replaced section of the stack contents has at least the
length 1. A transition that doesn’t inspect the next input symbol is called anε-transition.

Similarly as for finite-state machines, we introduce the notion of a configurationfor pushdown
automata. A configuration encompasses all components that may influence the future behavior of the
automaton. With our kind of pushdown automata these are the stack contents and the remaining input.
Formally, aconfigurationof the pushdown automatonP is a pair(γ, w) ∈ Q+ × V ∗

T . In the linear
representation the topmost position of the stack is always at the right end ofγ while the next input
symbol is situated at the left end ofw. A transitionof P is represented through the binary relation⊢

P

between configurations. This relation is defined by:

(γ, w) ⊢
P

(γ′, w′), if γ = αβ, γ′ = αβ′, w = xw′ und (β, x, β′) ∈ ∆

for a suitableα ∈ Q∗. As was the case with finite-state machines, acomputationis a sequence of
configurations, where a transition exists between each two consecutive members. We denote them by
C ⊢

n

P
C′ if there exist configurationsC1, . . . , Cn+1 such thatC1 = C, Cn+1 = C′ and Ci ⊢P Ci+1

for 1 ≤ i ≤ n holds. The relations⊢
+

P
and ⊢

∗

P
are the transitive and the reflexive and transitive closure

of ⊢
P

, resp. We have:

⊢
+

P
=

S

n ≥ 1
⊢
n

P
and ⊢

∗

P
=

S

n ≥ 0
⊢
n

P

A configuration(q0, w) for a w ∈ V ∗
T is called aninitial configuration, (q, ε), for q ∈ F , a final

configurationof the pushdown automatonP . A wordw ∈ V ∗
T is acceptedby a pushdown automaton

P if (q0, w) ⊢
∗

P
(q, ε) holds for aq ∈ F . The languageL(P) of the pushdown automatonP is the set

of words accepted byP :

L(P) = {w ∈ V ∗
T | ∃f ∈ F : (q0, w) ⊢

∗

P
(f, ε)}

This means, a wordw is accepted by a pushdown automaton if there exists at least one computation
that goes from an initial configuration(q0, w) to a final configuration. Such computations are called
accepting. Several accepting computations may exist for one word, butalso several computations that
can only read a prefix of a wordw or that can readw, but don’t reach a final configuration.

In practice, accepting computations should not be found by trial and error. Therefore,deterministic
pushdown automata are of particular importance.

3.2 Foundations 47

A pushdown automatonP is calleddeterministic, if the transition relation∆ has the following
property:

(D) If (γ1, x, γ2), (γ
′
1, x

′, γ′2) are two different transitions in∆ andγ′1 is a suffix ofγ1 thenx andx′

are inΣ and are different from each other, that is,x 6= ε 6= x′ andx 6= x′.

If the transition relation has the property(D) there exists at most one transition out of each configura-
tion.

3.2.4 The Item-Pushdown Automaton to a Context-Free Grammar

In this section, we meet a method that constructs for each context-free grammar a pushdown automaton
that accepts the language defined by the grammar. This automaton is non-deterministic and therefore
not overly useful for a practical application. However, we can derive theLL-parsers of Section 3.3, as
well as theLR-parsers of Section 3.4 by appropriate design decisions.

The notion of context-freeitem plays a decisive role. LetG = (VN , VT , P, S) be a context-free
grammar. Acontext-free itemof G is a triple (A,α, β) with A → αβ ∈ P . This triple is, more
intuitively, written as[A→ α.β]. The item[A→ α.β] describes the situation that in an attempt to
derive a wordw fromA a prefix ofw has already been derived fromα. α is therefore called thehistory
of the item.

An item [A→ α.β] with β = ε is calledcomplete. The set of all context-free items ofG is denoted
by ItG. Is ρ the sequence of items

ρ = [A1 → α1.β1][A2 → α2.β2] . . . [An → αn.βn]

thenhist(ρ) denotes the concatenation of the histories of the items ofρ, i.e.,

hist(ρ) = α1α2 . . . αn.

We now describe how to construct theitem-pushdown automatonto a context-free grammarG =
(VN , VT , P, S) . The items of the grammar act as its states and, therefore, also as stack symbols. The
actual state is the item whose right side the automaton is just processing. Below this state in the stack
are the items, where processing of their right sides has beenbegun, but not yet been finished.

Before we show how to construct the item-pushdown automatonto a grammar, we want to extend
the grammarG is such a way that termination of the pushdown automaton can be recognized by looking
at the actual state. IsS the start symbol of the grammar, candidates for final states of the item-pushdown
automaton are all complete items[S → α.] of the grammar. IfS also occurs on the right side of a
production such complete items can occur on the stack but still the automaton need not terminate since
below it there may be incomplete items. We, therefore, extend the grammarG by a new start symbolS′,
which does not occur in any right side. ForS′ we add the productionsS′→ S to the set of productions
of G. As initial state of the item-pushdown automaton for the extended grammar we chose the item
[S′ → .S] and as single final state the complete item[S′ → S.]. The item-pushdown automatonto the
grammarG is the pushdown automaton

PG = (ItG, VT , ∆, [S
′→ .S], {[S′→ S.]})

where the transition relation∆ has three types of transitions:

(E) ∆([X → β.Y γ], ε) = {[X → β.Y γ][Y → .α] | Y → α ∈ P}

(S) ∆([X → β.aγ], a) = {[X → βa.γ]}

(R) ∆([X → β.Y γ][Y → α.], ε) = {[X → βY.γ]}.

Transitions according to(E) are calledexpanding transitions, those according to(S) shifting transi-
tions and those according to(R) reducing transitions.

Each sequence of items that occurs as stack contents in the computation of an item-pushdown
automaton satisfies the following invariant(I):

48 3 Syntactic Analysis

(I) If ([S′→ .S], uv) ⊢
∗

PG
(ρ, v) then hist(ρ)

∗
=⇒

G
u.

This invariant is an essential part of the proof that the item-pushdown automatonPG only accepts words
of G, that is, thatL(PG) ⊆ L(G) holds. We now explain the way the automatonPG works and at the
same time give a proof by induction over the length of computations that the invariant(I) holds for
each configuration reachable from an initial configuration.Let us first consider the initial configuration
for the inputw. The initial configuration is([S′→ .S], w). The wordu = ε has already been read,
hist([S′→ .S]) = ε, andε ∗

=⇒ ε holds. Therefore, the invariant holds in this configuration.

Let us now consider derivations that consist of at least one transition. Let us firstly assume that the
last transition was an expanding transition. Before this transition, a configuration(ρ[X → β.Y γ], v)
was reached from the initial configuration([S′→ .S], uv).

This configuration satisfies the invariant(I) by the induction hypothesis, i.e.,hist(ρ)β
∗

=⇒ u holds.

The item[X → β.Y γ] as actual state suggests to derive a prefixv from Y . To do this, the automaton
should non-deterministically select one of the alternatives for Y . This is described by the transitions
according to(E). All the successor configurations(ρ[X → β.Y γ][Y → .α], v) for Y → α ∈ P also
satisfy the invariant(I) because

hist(ρ[X → β.Y γ][Y → .α]) = hist(ρ)β
∗

=⇒ u .

As next case, we assume that the last transition was a shifting transition. Before this transition, a con-
figuration(ρ[X → β.aγ], av) was reached from the initial configuration([S′ → .S], uav). This con-
figuration satisfies the invariant(I) by the induction hypothesis, that is,hist(ρ)β

∗
=⇒ u holds. The

successor configuration(ρ[X → βa.γ], v) also satisfies the invariant(I) because

hist(ρ[X → βa.γ]) = hist(ρ)βa
∗

=⇒ ua

For the final case, let us assume that the last transition was areducing transition. Before this transitions,
a configuration(ρ[X → β.Y γ][Y → α.], v) was reached from the initial configuration([S′→ .S], uv).
This configuration satisfies the invariant(I) according to the induction hypothesis, that is,hist(ρ)βα

∗
=⇒

G
u

holds. The actual state is the complete item[Y → α.]. It is the result of a computation that started with
the item[Y → .α], when[X → β.Y γ] was the actual state and the alternativeY → α for Y was se-
lected. This alternative was successfully processed. The successor configuration(ρ[X → βY.γ], v) also
satisfies the invariant(I) becausehist(ρ)βα

∗
=⇒

G
u implieshist(ρ)βY

∗
=⇒

G
u. ⊓⊔

Taken together, the following theorem holds:

Theorem 3.2.1 For each context-free grammarG, L(PG) = L(G).

Proof. Let us assumew ∈ L(PG). We then have

([S′→ .S], w) ⊢
∗

PG
([S′→ S.], ε) .

Because of the invariant(I), which we have already proved, it follows that

S = hist([S′→ S.])
∗

=⇒
G

w

Thereforew ∈ L(G). For the other direction, we assumew ∈ L(G). We then haveS
∗

=⇒
G

w. To prove

([S′ → .S], w) ⊢
∗

PG
([S′→ S.], ε)

we show a more general statement, namely that for each derivationA=⇒
G

α
∗

=⇒
G

w with A ∈ VN ,

(ρ[A→ .α], wv) ⊢
∗

PG
(ρ[A→ α.], v)

for arbitraryρ ∈ It∗G and arbitraryv ∈ V ∗
T . This general claim can be proved by induction over the

length of the derivationA=⇒
G

α
∗

=⇒
G

w. ⊓⊔

3.2 Foundations 49

Example 3.2.12Let G′ = ({S,E, T, F}, {+, ∗, (,), Id}, P ′, S) be the extension of grammarG0 by
the new start symbolS. The set of productionsP ′ is given by

S → E

E → E + T | T

T → T ∗ F | F

F → (E) | Id

The transition relation∆ of PG0 is presented in Table 3.1. Table 3.2 shows an accepting computation
of PG0 for the wordId + Id ∗ Id. ⊓⊔

Pushdown Automata with Output

Pushdown automata as such are only acceptors, that is, they decide whether or not an input string is
a word of the language. To use a pushdown automaton for the syntactic analysis in a compiler needs
more than a yes/no answer. The automaton should output the syntactic structure of accepted input
words. This can have one of several forms, a parse tree or the sequence of productions as they were
applied in a leftmost or rightmost derivation. We, therefore, extend pushdown automata by a means to
produce output.

A pushdown automatonwith outputis a tupleP = (Q, VT , O,∆, q0, F), whereQ, VT , q0, F are
the same as with a normal pushdown automaton andO is a finite output alphabet.∆ is a finite relation
betweenQ+ × (VT ∪ {ε}) andQ∗ × (O ∪ {ε}). A configurationconsists of the actual stack content,
the remaining input, and the already produced output. It is an element ofQ+ × V ∗

T ×O
∗.

At each transition, the automaton can output one symbol fromO. If a pushdown automaton with
output is used as a parser its output alphabet consists of theproductions of the context-free grammar or
their numbers.

The item-pushdown automaton can be extended by a means to produce output in essentially two
different ways. It can output the applied production whenever it performs an expansion. In this case,
the overall output of an accepting computation is a leftmostderivation. A pushdown automaton with
this output discipline is called aleft-parser.

Instead at expansion, the item-pushdown automaton can output the applied production at each re-
duction. In this case, it delivers a rightmost derivation, but in reversed order. A pushdown automaton
using such an output discipline is called aright-parser.

Deterministic Parsers

In Theorem 3.2.1 we proved that the item-pushdown automatonPG to a context-free grammarG ac-
cepts the grammar’s languageL(G). However, the non-deterministic way of working of the pushdown
automaton is unsuitable for practice. The source of non-determinism lies in the transitions of type(E):
the item-pushdown automaton can choose between several alternatives for a nonterminal at expand-
ing transitions, With a non-ambiguous grammar at most one isthe correct choice to derive a prefix
of the remaining input. The other alternatives lead sooner or later into dead ends. The item-pushdown
automaton can onlyguessthe right alternative.

In Sections 3.3 and 3.4, we describe two different ways to replace guessing. TheLL-parsers of Sec-
tion 3.3 deterministically choose one alternative for the actual nonterminal using a bounded lookahead
into the remaining input. For grammars of classLL(k) a corresponding parser can deterministically
select one(E)-transition based on the already consumed input, the nonterminal to be expanded and the
next k input symbols.LL-parsers are left-parsers.

LR-parsers work differently. Theydelay the decision, whichLL-parsers take at expansion, until
reduction. All the time during the analysis they pursue all possible derivations in parallel that may lead
to a reverse rightmost derivation for the input word. A decision has to be taken only when one of these
possibilities signals a reduction. This decision concernswhether to continue shifting or to reduce, and
in the latter case, by which production. Basis for this decision is again the actual stack contents and

50 3 Syntactic Analysis

top of the stack input new top of the stack

[S → .E] ε [S → .E][E → .E + T]

[S → .E] ε [S → .E][E → .T]

[E → .E + T] ε [E → .E + T][E → .E + T]

[E → .E + T] ε [E → .E + T][E → .T]

[F → (.E)] ε [F → (.E)][E → .E + T]

[F → (.E)] ε [F → (.E)][E → .T]

[E → .T] ε [E → .T][T → .T ∗ F]

[E → .T] ε [E → .T][T → .F]

[T → .T ∗ F] ε [T → .T ∗ F][T → .T ∗ F]

[T → .T ∗ F] ε [T → .T ∗ F][T → .F]

[E → E + .T] ε [E → E + .T][T → .T ∗ F]

[E → E + .T] ε [E → E + .T][T → .F]

[T → .F] ε [T → .F][F → .(E)]

[T → .F] ε [T → .F][F → .Id]

[T → T ∗ .F] ε [T → T ∗ .F][F → .(E)]

[T → T ∗ .F] ε [T → T ∗ .F][F → .Id]

[F → .(E)] ([F → (.E)]

[F → .Id] Id [F → Id.]

[F → (E.)]) [E → (E).]

[E → E. + T] + [E → E + .T]

[T → T. ∗ F] ∗ [T → T ∗ .F]

[T → .F][F → Id.] ε [T → F.]

[T → T ∗ .F][F → Id.] ε [T → T ∗ F.]

[T → .F][F → (E).] ε [T → F.]

[T → T ∗ .F][F → (E).] ε [T → T ∗ F.]

[T → .T ∗ F][T → F.] ε [T → T. ∗ F]

[E → .T][T → F.] ε [E → T.]

[E → E + .T][T → F.] ε [E → E + T.]

[E → E + .T][T → T ∗ F.] ε [E → E + T.]

[T → .T ∗ F][T → T ∗ F.] ε [T → T. ∗ F]

[E → .T][T → T ∗ F.] ε [E → T.]

[F → (.E)][E → T.] ε [F → (E.)]

[F → (.E)][E → E + T.] ε [F → (E.)]

[E → .E + T][E → T.] ε [E → E. + T]

[E → .E + T][E → E + T.] ε [E → E. + T]

[S → .E][E → T.] ε [S → E.]

[S → .E][E → E + T.] ε [S → E.]

Table 3.1. Tabular representation of the transition relation of Example 3.2.12. The middle column shows the
consumed input.

3.2 Foundations 51

stack contents remaining input

[S → .E] Id + Id ∗ Id

[S → .E][E → .E + T] Id + Id ∗ Id

[S → .E][E → .E + T][E → .T] Id + Id ∗ Id

[S → .E][E → .E + T][E → .T][T → .F] Id + Id ∗ Id

[S → .E][E → .E + T][E → .T][T → .F][F → .Id] Id + Id ∗ Id

[S → .E][E → .E + T][E → .T][T → .F][F → Id.] +Id ∗ Id

[S → .E][E → .E + T][E → .T][T → F.] +Id ∗ Id

[S → .E][E → .E + T][E → T.] +Id ∗ Id

[S → .E][E → E. + T] +Id ∗ Id

[S → .E][E → E + .T] Id ∗ Id

[S → .E][E → E + .T][T → .T ∗ F] Id ∗ Id

[S → .E][E → E + .T][T → .T ∗ F][T → .F] Id ∗ Id

[S → .E][E → E + .T][T → .T ∗ F][T → .F][F → .Id] Id ∗ Id

[S → .E][E → E + .T][T → .T ∗ F][T → .F][F → Id.] ∗Id

[S → .E][E → E + .T][T → .T ∗ F][T → F.] ∗Id

[S → .E][E → E + .T][T → T. ∗ F] ∗Id

[S → .E][E → E + .T][T → T ∗ .F] Id

[S → .E][E → E + .T][T → T ∗ .F][F → .Id] Id

[S → .E][E → E + .T][T → T ∗ .F][F → Id.]

[S → .E][E → E + .T][T → T ∗ F.]

[S → .E][E → E + T.]

[S → E.]

Table 3.2. The accepting computation ofPG for the wordId + Id ∗ Id.

a bounded lookahead into the remaining input.LR-parsers signal reductions, and therefore are right-
parsers. There does not exist anLR-parser for each context-free grammar, but only for grammars of
the classLR(k), wherek again is the number of necessary lookahead symbols.

3.2.5 first- and follow-Sets

Let us consider the item-pushdown automatonPG to a context-free grammarG when it performs
an expansion, that is, at an(E)-transition. Just before such a transition,PG is in a state of the form
[X → α.Y β]. In this state, the pushdown automatonPG must select non-deterministically one of the
alternativesY → α1 | . . . | αn for the nonterminalY . A good aid for this selection is the knowledge of
the sets of words that can be produced from the different alternatives. If the beginning of the remaining
input only matches words in the set of words derivable from one alternativeY → αi this alternative is
to be selected. If some of the alternatives also produce short words or evenε the set of words that may
follow Y becomes relevant.

It is wise to only considerprefixesof such words of a given lengthk since the sets of words that
can be derived from an alternative are in general infinite. The sets of prefixes, in contrast, are finite. A
generated parser bases its decisions on a comparison of prefixes of the remaining input of lengthk with
the elements in these precomputed sets. For this purpose, weintroduce the two functionsfirstk and
followk, which associate these sets with words over(VN ∪ VT)∗ andVN , resp. For an alphabetVT , we

write V ≤k
T for

k⋃

i = 0
V i

T andV ≤k
T,# for V ≤k ∪ (V ≤k−1

T {#}), where# is a symbol that is not contained

in VT . Like the EOF symbol,eof, it marks the end of a word. Letw = a1 . . . an be a wordai ∈ VT for
(1 ≤ i ≤ n), n ≥ 0. Fork ≥ 0, we define thek-prefixof w by

52 3 Syntactic Analysis

w|k =

{

a1 . . . an if n ≤ k

a1 . . . ak otherwise

Further, we introduce the operator⊙k : VT × VT → V ≤k
T defined by

u⊙k v = (uv)|k

This operator is calledk-concatenation. We extend both operators to sets of words. For setsL ⊆ V ∗
T

andL1, L2 ⊆ V ≤k we define

L|k = {w|k | w ∈ L} and L1 ⊙k L2 = {x⊙k y | x ∈ L1, y ∈ L2} .

LetG = (VN , VT , P, S) be a context-free grammar. Fork ≥ 1, we define the functionfirstk : (VN ∪

VT)∗ → 2V
≤k

T that returns for each wordα the set of all prefixes of lengthk of terminal words that can
be derived fromα.

firstk(α) = {u|k | α
∗

=⇒ u}

Correspondingly, the functionfollowk : VN → 2V
≤k

T,# returns for a nonterminalX the set of terminal
words of length at mostk that can directly follow a nonterminalX in a sentential form:

followk(X) = {w ∈ V ∗
T | S

∗
=⇒ βXγ andw ∈ firstk(γ#)}

The setfirstk(X) consists of thek-prefixes of leaf words of all trees forX , followk(X) of thek-prefixes
of the second part of leaf words of all upper tree fragments for X (see Fig. 3.5). The following lemma

S

X

followk(X)
firstk(X)

Fig. 3.5. firstk andfollowk in a parse tree

describes some properties ofk-concatenation and the functionfirstk.

Lemma 3.2.Let k ≥ 1, and letL1, L2, L3 ⊆ V ≤k be given. We then have:

(a) L1 ⊙k (L2 ⊙k L3) = (L1 ⊙k L2)⊙k L3

(b) L1 ⊙k {ε} = {ε} ⊙k L1 = L1|k

(c) L1 ⊙k L2 = ∅ iff L1 = ∅ ∨ L2 = ∅

(d) ε ∈ L1 ⊙k L2 iff ε ∈ L1 ∧ ε ∈ L2

(e) (L1L2)|k = L1|k ⊙k L2|k

(f) firstk(X1 . . . Xn) = firstk(X1)⊙k . . .⊙k firstk(Xn)

forX1, . . . , Xn ∈ (VT ∪ VN)

3.2 Foundations 53

The proofs for(b), (c), (d) and(e) are trivial.(a) is obtained by case distinctions over the length of
wordsx ∈ L1, y ∈ L2, z ∈ L3. The proof for(f) uses(e) and the observation thatX1 . . . Xn

∗
=⇒ u holds

if and only if u = u1 . . . un for suitable wordsui with Xi
∗

=⇒ ui.

Because of property(f), the computation of the setfirstk(α) can be reduced to the computation of
the setfirstk(X) for single symbolsX ∈ VT ∪ VN . Sincefirstk(a) = {a} holds fora ∈ VT it suffices
to determine the setsfirstk(X) for nonterminalsX . A wordw ∈ V ≤k

T is in firstk(X) if and ony ifw is
contained in the setfirstk(α) for one of the productionsX → α ∈ P .

Due to property(f) of Lemma 3.2, thefirstk-sets satisfy the equation system(fi):

firstk(X) =
⋃

{firstk(X1)⊙k . . .⊙k firstk(Xn) | X → X1 . . .Xn ∈ P} , Xi ∈ VN (fi)

Example 3.2.13LetG2 be the context-free grammar with the productions:

0 : S → E 3 : E′ → +E 6 : T ′ → ∗T

1 : E → TE′ 4 : T → FT ′ 7 : F → (E)

2 : E′ → ε 5 : T ′ → ε 8 : F → Id

G2 generates the same language of arithmetic expressions asG0 andG1. We obtain as system of
equations for the computation of thefirst1-sets:

first1(S) = first1(E)

first1(E) = first1(T)⊙1 first1(E′)

first1(E′) = {ε} ∪ {+} ⊙1 first1(E)

first1(T) = first1(F)⊙1 first1(T ′)

first1(T ′) = {ε} ∪ {∗} ⊙1 first1(T)

first1(F) = {Id} ∪ {(} ⊙1 first1(E)⊙1 {)}

⊓⊔

The right sides of the system of equations of thefirstk-sets can be represented as expressions consisting
of unknownsfirstk(Y), Y ∈ VN and the set constants{x}, x ∈ VT ∪ {ε} and built using the operators
⊙k and∪. Immediately the following questions arise:

• Does this system of equations always have solutions?
• If yes, which is the one corresponding to thefirstk-sets?
• How does one compute this solution?

To answer these questions we first consider in general systems of equations like(fi) and look for an
algorithmic approach to solve such systems: Letx1, . . . ,xn be a set of unknowns,

x1 = f1(x1, . . . ,xn)

x2 = f2(x1, . . . ,xn)
...

xn = fn(x1, . . . ,xn)

a system of equations to be solved over a domainD. Eachfi on the right side denotes a function
fi : D

n → D. A solutionI∗ of this system of equations associates a valueI∗(xi) with each unknown
xi such that all equations are satisfied, that is

I∗(xi) = fi(I
∗(x1), . . . , I

∗(xn))

holds for alli = 1, . . . , n.
Let us assume,D contained a distinctive elementd0 that would offer itself as start value for the

calculation of a solution. A simple idea to determine a solution consists in setting all the unknowns

54 3 Syntactic Analysis

x1, . . . ,xn to this start valued0. Let I(0) be this variable binding. All right sidesfi are evaluated in
this variable binding. This might associate each variablexi with a new value. All these new values
form a new variable bindingI(1), in which the right sides are again evaluated, and so on. Let us assume
that an actual variable bindingI(j) has been computed. The new variable bindingI(j+1) is determined
through:

I(j+1)(xi) = fi(I
(j)(x1), . . . , I

(j)(xn))

A sequence of variable bindingsI(0), I(1), . . . results. If for aj ≥ 0 holds thatI(j+1) = I(j), then

I(j)(xi) = fi(I
(j)(x1), . . . , I

(j)(xn)) (i = 1, . . . , n).

ThereforeI(j) = I∗ is a solution.
Without further assumptions it is unclear whether aj with I(j+1) = I(j) is ever reached. In the

special cases considered in this volume, we can guarantee that this procedure converges not only against
some solution, but against the desired solution. This is based on properties of the domainsD that occur
in our applications.

• There always exists apartial order on the domainD represented by the symbol⊑. In the case of
thefirstk-sets the setD consists of all subsets of the finite base setV ≤k

T of terminal words of length
at mostk. The partial order over this domain is thesubset relation.
• D contains a uniquely determined least element with which theiteration can start. This element is

denoted as⊥ (bottom). In the case of thefirstk-sets, this least element is the empty set.
• For each subsetY ⊆ D, there exists aleast upper bound

⊔
Y wrt. to the relation⊑. In the case of

thefirstk-sets, the least upper bound of a set of sets is the union of itssets. Partial orders with this
property are calledcompete lattices.

Furthermore, all functionsfi aremonotonic, that is, they respect the order⊑ of their arguments. In
the case of thefirstk-sets this holds because the right sides of the equations arebuilt from the opera-
tors union andk-concatenation, which are both monotonic and because the composition of monotonic
functions is again monotonic.

If the algorithm is started withd0 = ⊥, it holds thatI(0) ⊑ I(1). Hereby, a variable binding is less
than or equal to another variable binding, if this holds for the value of each variable. The monotonicity
of the functionsfi implies by induction that the algorithm produces anascendingsequence

I(0) ⊑ I(1) ⊑ I(2) ⊑ . . . I(k) ⊑ . . .

of variable bindings. If the domainD is finite, there exists aj, such thatI(j) = I(j+1) holds. This means
that the algorithm in fact finds a solution. One can even show that this solution is theleastsolution.
Such a least solution does even exist if the complete latticeis not finite, and if the simple iteration does
not terminate. This follows from the fixed-point theorem of Knaster-Tarski, which we treat in detail in
the third volumeCompiler Design: Analysis and Transformation.

Example 3.2.14Let us apply this algorithm to determine a solution of the system of equations of
Example 3.2.13. Initially, all nonterminals are associated with the empty set. The following table shows
the words added to thefirst1-sets in thei-ten iteration.

1 2 3 4 5 6 7 8

S Id (

E Id (

E′ ǫ +

T Id (

T ′ ǫ ∗

F Id (

The following result is obtained:

3.2 Foundations 55

first1(S) = {Id, (}

first1(E) = {Id, (}

first1(E′) = {ε,+}

first1(T) = {Id, (}

first1(T ′) = {ε, ∗}

first1(F) = {Id, (}

⊓⊔

It suffices to show that all right sides are monotonic and thatthe domain is finite to guarantee the
applicability of the iterative algorithm for a given systemof equations over a complete lattice.

The following theorem makes sure that theleastsolution of the system of equations(fi) indeed
characterizes thefirstk-sets.

Theorem 3.2.2 (Correctness of thefirstk-sets) Let G = (VN , VT , P, S) be a context-free grammar,
D the complete lattice of the subsets ofV ≤k

T , andI : VN → D be the least solution of the system of
equations(fi). We then have:

I(X) = firstk(X) for all X ∈ VN

Proof. For i ≥ 0 let I(i) be the variable binding after thei-th iteration of the algorithm to find
solutions for(fi). One shows by induction overi that for all i ≥ 0 I(i)(X) ⊆ firstk(X) holds for
all X ∈ VN . Therefore, it also holdsI(X) =

⋃

i≥0(X) ⊆ firstk(X) for all X ∈ VN . For the other

direction it suffices to show that for each derivationX
∗

=⇒
lm

w, there exists ani ≥ 0 withw|k ∈ I(i)(X).

This claim is again shown by induction, this time by induction over the lengthn ≥ 1 of the leftmost
derivation. Isn = 1 the grammar has a productionX → w. We then have

I(1)(X) ⊇ firstk(w) = {w|k}

and the claim follows withi = 1. Is n > 1, ther exists a productionX → u0X1u1 . . . Xmum with
u0, . . . , um ∈ V ∗

T andX1, . . . , Xm ∈ VN and leftmost derivationsXi
∗

=⇒
lm

wj , j = 1, . . . , k who all

have a length less thann, with w = u0w1u1 . . . wmum. According to the induction hypothesis, for
eachj ∈ {1, . . . ,m} there exists aij , such that(wi|k) ∈ I(ij)(Xi) holds. Leti′ be the maximum of
theseij . Fori = i′ + 1 it holds

I(i)(X) ⊇ {u0} ⊙k I
(i′)(X1)⊙k {u1} . . .⊙k I

(i′)(Xm)⊙k {um}

⊇ {u0} ⊙k {w1|k} ⊙k {u1} . . .⊙k {wm|k} ⊙k {um}

⊇ {w|k}

The claim follows. ⊓⊔

To compute least solutions of systems of equations or similarly for systems of inequalities over com-
plete lattices is a problem that also appears in the computation of program invariants, which are used
to show the applicability of program transformations, which are to increase the efficiency of programs.
Such analyses and transformations are presented in the volumeCompiler Design: Analysis and Trans-
formation. The global iterative approach just sketched is not necessarily the best method to solve sys-
tems of equations. In the volumeCompiler Design: Analysis and Transformationwe describe more
efficient methods.

Let us now consider how to computefollowk-sets for an extended context-free grammarG. Again,
we start with an adequate recursive property. For a wordw ∈ V k

T ∪ V
≤k−1
T {#} holdsw ∈ followk(X)

if

(1) X = S′ is the start symbol of the grammar andw = # holds,
(2) or there exists a productionY → αXβ in G such thatw ∈ firstk(β)⊙k followk(Y) holds.

The setsfollowk(X) satisfy the following system of equations :

followk(S′) = {#}

followk(X) =
⋃
{firstk(β)⊙k followk(Y) | Y → αXβ ∈ P}, S′ 6= X ∈ VN

(fo)

56 3 Syntactic Analysis

Example 3.2.15Let us again consider the context-free grammarG2 of Example 3.2.13. To calculate
thefollow1-sets for the grammarG2 we use the system of equations:

follow1(S) = {#}

follow1(E) = follow1(S) ∪ follow1(E
′) ∪ {)} ⊙1 follow1(F)

follow1(E
′) = follow1(E)

follow1(T) = {ε,+} ⊙1 follow1(E) ∪ follow1(T
′)

follow1(T
′) = follow1(T)

follow1(F) = {ε, ∗} ⊙1 follow1(T)

⊓⊔

The system of equations(fo) has again to be solved over a subset lattice. The right sides of the equations
are built from constant sets and unknowns by monotonic operators. Therefore,(fo) has a solution, which
can be computed by global iteration. We want to ascertain that this algorithm indeed computes the right
sets.

Theorem 3.2.3 (Correctness of thefollowk-sets) Let G = (VN , VT , P, S
′) be an extended context-

free grammar,D be the complete lattice of subsets ofV k
T ∪ V

≤k−1
T {#} and,I : VN → D be the least

solution of the system of equations(fo). We then have:

I(X) = followk(X) for all X ∈ VN

⊓⊔

The proof is simiilar to the proof of Theorem 3.2.2 and is leftto the reader (Exercise 6).

Example 3.2.16We consider the system of equations of Example 3.2.15. To compute the solution
the iteration again starts with the value∅ for each nonterminal. The words added in the subsequent
iterations are shown in the following table:

1 2 3 4 5 6 7

S #

E #)

E′ #)

T +,#,)

T ′ +,#,)

F ∗,+,#,)

Altogether we obtain the following sets:

follow1(S) = {#}

follow1(E) = {#,)}

follow1(E
′) = {#,)}

follow1(T) = {+,#,)}

follow1(T
′) = {+,#,)}

follow1(F) = {∗,+,#,)}

⊓⊔

3.2.6 The Special Casefirst1 and follow1

The iterative method for the computation of least solutionsof systems of equations for thefirst1- and
follow1-sets is not very efficient. But even for more efficient methods, the computation offirstk- and
follow1-sets needs a large effort whenk gets larger. Therefore, practical parsers only use lookahead of
lengthk = 1. In this case, the computation of thefirst- andfollow-sets can be performed particularly
efficient. The following lemma is the base for our further treatment.

3.2 Foundations 57

Lemma 3.3.LetL1, L2 ⊆ V
≤1
T be non-empty languages. We then have:

L1 ⊙1 L2 =

{

L1 if L2 6= ∅ andε 6∈ L1

(L1\{ε}) ∪ L2 if L2 6= ∅ andε ∈ L1

According to our assumption, the considered grammars are always reduced. They, therefore, contain
neither non-productive nor unreachable nonterminals. It holds for allX ∈ VN thatfirst1(X) as well
as follow1(X) are non-empty. Taken together with Lemma 3.3, it allows us tosimplify the transfer
functions forfirst1 andfollow1 in such a way that the1-concatenation can be (essentially) replaced by
unions. We want to eliminate the case distinction of whetherε is contained in thefirst1-sets or not. This
done in two steps: In the first step, the set of nonterminalsX is determined that satisfyε ∈ first1(X).
In the second step, theε-freefirst1-set is determined for each nonterminalX instead of thefirst1-sets.
Theε-freefirst1-sets are defined by

eff(X) = first1(X)\{ε}

= {(w|k) | X
∗

=⇒
G

w,w 6= ε}

To implement the first step, it helps to exploit that for each nonterminalX

ε ∈ first1(X) if and only if X
∗

=⇒ ε

Example 3.2.17Consider the grammarG2 of Example 3.2.13. The set of productions in which no
terminal symbol occurs is

0 : S → E

1 : E → TE′ 4 : T → FT ′

2 : E′ → ε 5 : T ′ → ε

With respect to this set of productions only the nonterminals E′ andT ′ are productive. These two
nonterminals are, thus, the onlyε-productive nonterminals of grammarG2. ⊓⊔

Let us now turn to the second step, the computation of theε-freefirst1-sets. Consider a production of
the formX →X1 . . . Xm. Its contribution toeff(X) can be written as

⋃

{eff(Xj) | X1 . . . Xj−1
∗

=⇒
G

ε}

Altogether, we obtain the system of equations :

eff(X) =
⋃

{eff(Y) | X → αY β ∈ P, α
∗

=⇒
G

ε}, X ∈ VN (eff)

Example 3.2.18Consider again the context-free grammarG2 of Example 3.2.13. The following sys-
tem of equations serves to compute theε-freefirst1-sets.

eff(S) = eff(E)

eff(E) = eff(T)

eff(E′) = ∅ ∪ {+}

eff(T) = eff(F)

eff(T ′) = ∅ ∪ {∗}

eff(F) = {Id} ∪ {(}

All occurrences of the⊙1-operator have disappeared. Instead, only constant sets, unions and variables
eff(X) appear on the right sides. The least solution is

eff(S) = {Id, (}

eff(E) = {Id, (}

eff(E′) = {+}

eff(T) = {Id, (}

eff(T ′) = {∗}

eff(F) = {Id, (}

⊓⊔

58 3 Syntactic Analysis

Nonterminals that occur to the right of terminals do not contribute to theε-freefirst1-sets. It is important
for the correctness of the construction that all nonterminals of the grammar are productive.

Theε-freefirst1-setseff(X) can also be used to simplify the system of equations for the computa-
tion of thefollow1-sets. Consider a production of the formY → αXX1 . . . Xm. The contribution of
the occurrence ofX in the right side ofY to the setfollow1(X) is

⋃

{eff(Xj) | X1 . . . Xj−1
∗

=⇒
G

ε} ∪ {follow1(Y) | X1 . . . Xm
∗

=⇒
G

ε}

If all nonterminals are not only productive, but also reachable the equation system for the computation
of thefollow1-sets simplifies to

follow1(S
′) = {#}

follow1(X) =
⋃
{eff(Y) | A→ αXβY γ ∈ P, β

∗
=⇒

G
ε}

∪
⋃
{follow1(A) | A→ αXβ, β

∗
=⇒

G
ε}, X ∈ VN\{S′}

Example 3.2.19The simplified system of equations for the computation of thefollow1-sets of the
context-free grammarG2 of Example 3.2.13 becomes

follow1(S) = {#}

follow1(E) = follow1(S) ∪ follow1(E
′) ∪ {)}

follow1(E
′) = follow1(E)

follow1(T) = {+} ∪ follow1(E) ∪ follow1(T
′)

follow1(T
′) = follow1(T)

follow1(F) = {∗} ∪ follow1(T)

Again we observe that all occurrences of the operators⊙1 were eliminated. Only constant sets and
variablesfollow1(X) occur on the right side of equations together with the union operator. ⊓⊔

The next section presents a method that solves arbitrary systems of equations very efficiently that are
similar to the simplified systems of equations for the setseff(X) andfollow1(X). We first describe the
general method and then apply it to the computations of thefirst1- andfollow1-sets.

3.2.7 Pure Union Problems

Let us assume we had a system of equations

xi = ei, i = 1, . . . , n

over an arbitrary complete latticeD. On the right side of the equations were expressionsei that are
built only from constants inD, variablesxj , and applications of the operator⊔ (least upper bound of
the complete latticeD). The problem is to efficiently determine the least solutionof this system of
equations. Such a problem is called apure union problem.

The computation of the set of reachable nonterminals of a context-free grammar is a pure union
problem over the Boolean latticeB = {false, true}. Also the problems to computeε-freefirst1-sets and
follow1-sets for a reduced context-free grammar are pure union problems. In these cases, the complete
lattices are2VT and2VT ∪{#}, ordered by the subset relation.

Example 3.2.20As running example we consider the subset latticeD = 2{a,b,c} together with the
system of equations

x0 = {a}

x1 = {b} ∪ x0 ∪ x3

x2 = {c} ∪ x1

x3 = {c} ∪ x2 ∪ x3

⊓⊔

3.2 Foundations 59

We construct a variable-dependency graph to a pure union problem. The nodes of this graph are the
variablesxi of the system of equations. An edge(xi,xj) exists if and only if the variablexi occurs
in the right side of the variablexj . Fig. 3.6 shows the variable-dependency graph for the system of
equations of Example 3.2.20

x0 x1

x2

x3

Fig. 3.6.The variable-dependency graph for the system of equations of Example 3.2.20.

Let I be the least solution of the system of equations. We observe that alwaysI(xi) ⊑ I(xj) must
hold if there exists a path fromxi to xj in the variable-dependency graph. In consequence, the values
of all variables in eachstrongly-connected componentof the variable-dependency graph are the same.

We label each variablexi with the least upper bound of all constants that occur on the right sides of
equations for variablexi. Let us call this valueI0(xi). We have for allj that

I(xj) = ⊔{I0(xi) | xj is reachable fromxi}

Example 3.2.21 (Continuation of Example 3.2.20)
For the system of equations of Example 3.2.20 we find:

I0(x0) = {a}

I0(x1) = {b}

I0(x2) = {c}

I0(x3) = {c}

It follows:
I(x0) = I0(x0) = {a}

I0(x1) = I0(x0) ∪ I0(x1) ∪ I0(x2) ∪ I0(x3) = {a, b, c}

I0(x2) = I0(x0) ∪ I0(x1) ∪ I0(x2) ∪ I0(x3) = {a, b, c}

I0(x3) = I0(x0) ∪ I0(x1) ∪ I0(x2) ∪ I0(x3) = {a, b, c}

⊓⊔

This observation suggests the following method to compute the least solutionI of the system of equa-
tions. First, the strongly-connected components of the variable-dependency graph are computed. This
needs a linear number of steps. Then an iteration over the list of strongly-connected components is
performed.

One starts with a strongly-connected componentQ, that has no entering edges coming from other
strongly-connected components. The values of all variablesxj ∈ Q are:

I(xj) =
⊔

{I0(xi) | xi ∈ Q}

The valuesI(xj) can be computed by the two loops:

D t← ⊥;

forall (xi ∈ Q)

t← t ⊔ I0(xi);

forall (xi ∈ Q)

I(xi)← t;

60 3 Syntactic Analysis

The run time of both loops is proportional to the number of elements in the strongly-connected compo-
nentQ. The values of the variables inQ are propagated along the outgoing edges. LetEQ be the set of
edges(xi,xj) of the variable-dependency graph withxi ∈ Q andxj 6∈ Q, that is, the edges leavingQ.
ForEQ it is set:

forall ((xi,xj) ∈ EQ)

I0(xj)← I0(xj) ⊔ I(xi);

The number of steps for the propagation is proportional to the number of edges inEQ.
The strongly-connected componentQ together with the setEQ of outgoing edges is removed from

the graph and one continues with the next strongly-connected component without ingoing edges. This
is repeated until no more strongly-connected component remains. Altogether, we have a method that
performs a linear number of operations⊔ on the complete latticeD.

Example 3.2.22 (Continuation of Example 3.2.20)The dependency graph of the system of equations
of Example 3.2.20 has the strongly-connected components

Q0 = {x0} and Q1 = {x1,x2,x3} .

For Q0 one obtains the valueI0(x0) = {a}. After removal ofQ0 and the edge(x0,x1), the new
assignment is:

I0(x1) = {a, b}

I0(x2) = {c}

I0(x3) = {c}

The value of all variables in the strongly-connected componentQ1 arise asI0(x1)∪I0(x2)∪I0(x3) =
{a, b, c}. ⊓⊔

3.3 Top-down-Syntax Analysis

3.3.1 Introduction

The way different parsers work can best be made intuitively clear by observing how they construct
the parse tree to an input word.Top-downparsers start the construction of the parse tree at the root.
In the initial situation, the constructed fragment of the parse tree consists of the root, which is labeled
by the start symbol of the context-free grammar; nothing of the input wordw is consumed. In this
situation, one alternative for the start symbol is selectedfor expansion. The symbols of the right side
of this alternative are attached under the root extending the upper fragment of the parse tree. The next
nonterminal to be considered is the one on the leftmost position. The selection of one alternative for this
nonterminal and the attachment of the right side below the node labeled with the left side is repeated
until the parse tree is complete. By attaching symbols of theright side of a production terminal symbols
can appear in the leaf word of a tree fragment. If there is no nonterminal to the left of a terminal symbol
in the leaf word the top-downtop-downparser compares them with the next symbol in the input. If they
agree the parser will consume these symbols in the input. Otherwise, the parser will report a syntax
error.

Thus, atop-downanalysis performs the following two types of actions:

• Selection of an alternative for the actual leftmost nonterminal and attachment of the right side of
the production to the actual tree fragment.
• Comparison of terminal symbols to the left of the leftmost nonterminal with the remaining input.

Figures 3.7, 3.8, 3.9 and 3.10 show some parse tree fragmentsfor the arithmetic expressionId + Id ∗
Id according to grammarG2. The selection of alternatives for the nonterminals to be expanded was
cleverly done in such a way as to lead to a successful termination of the analysis.

3.3 Top-down-Syntax Analysis 61

S → E E′ → + E | ε T ′ → ∗ T | ε

E → T E′ T → F T ′ F → (E) | Id

Id + Id Id∗

S

E

T E ′

S

E

T E ′

S

E

F T ′

S

Fig. 3.7. The first parse-tree fragments of atop-downanalysis of the wordId + Id ∗ Id according to grammarG2.
They are constructed without reading any symbol from the input.

+ Id Id∗

T E ′

S

E

F T ′

Id

T E ′

S

E

F T ′

Id ε

Fig. 3.8. The parse tree fragments after reading of the symbolId and before the terminal symbol+ is attached to
the fragment.

Id Id∗

Id

+

E ′

F T ′

T

F T ′

T E ′ε

E

S

E

Id

+

E ′

ε

F T ′ E

T

S

E

Fig. 3.9. The first and the last parse tree after reading of the symbols+ and before the second symbolId appears
in the parse tree.

62 3 Syntactic Analysis

IdId∗

+

E ′

F T ′

T E ′

Id

Id

E

S

E

F T ′

T

ε

ε

+

E ′

F T ′

T

Id

Id E ′

∗

S

E

F T ′

T

ε

ε

E

E

Fig. 3.10. The parse tree after the reduction for the second occurrenceof T ′ and the parse tree after reading the
symbol∗, together with the remaining input.

3.3.2 LL(k): Definition, Examples, and Properties

The Item-pushdown automatonPG to a context-free grammarG works in principle like atop-down
parser; its(E)-transitions make a predictions which alternative to select for the actual nonterminal
to derive the input word. The trouble is that the item pushdown-automatonPG takes this decision in
a nondeterministic way. The nondeterminism stems from the(E) transitions. If[X → β.Y γ] is the
actual state and ifY has the alternativesY → α1 | . . . | αn there aren transitions

∆([X → β.Y γ], ε) = {[X → β.Y γ][Y → .αi] | 1 ≤ i ≤ n}

To derive a deterministic automaton from the item pushdown-automatonPG we equip the automaton
with a bounded lookaheadinto the remaining input. We fix a natural numberk ≥ 1 and allow the item
pushdown-automaton to inspect thek first symbols of the remaining input at each(E) transition to aid
in its decision. If this lookahead of depthk always suffices to select the right alternative we call the
grammarLL(k) grammar.

Let us regard a configuration that the item pushdown-automatonPG has reached from an initial
configuration:

([S′→ .S], uv) ⊢
∗

PG
(ρ[X → β.Y γ], v)

Because of invariant(I) of Section?? it holdshist(ρ)β
∗

=⇒ u.

Let ρ = [X1 −→ β1.X2γ1] . . . [Xn −→ βn.Xn+1γn] be a sequence of items. We call the sequence

fut(ρ) = γn . . . γ1

the future of ρ. Let δ = fut(ρ). So far, the leftmost derivationS′ ∗
=⇒
lm

uY γδ has been found. If this

derivation can be extended to a derivation of the terminal word uv, that is,S′ ∗
=⇒
lm

uY γδ
∗

=⇒
lm

uv, then

in anLL(k) grammar the alternative to be selected forY only depends onu, Y andv|k.
Let k ≥ 1 be a natural number. The reduced context-free grammarG is aLL(k)-grammarif for

every two leftmost derivations:

S
∗

=⇒
lm

uY α=⇒
lm

uβα
∗

=⇒
lm

ux and S
∗

=⇒
lm

uY α=⇒
lm

uγα
∗

=⇒
lm

uy

andx|k = y|k impliesβ = γ.

3.3 Top-down-Syntax Analysis 63

For anLL(k) grammar, the selection of the alternative for the next nonterminalY in general de-
pends not only onY and the nextk symbols, but also on the already consumed prefixu of the input. If
this selection does, however, not depend on the already consumed left contextu we call the grammar
strong-LL(k).

Example 3.3.1LetG1 the context-free grammar with the productions:

〈stat〉 → if (Id) 〈stat〉 else 〈stat〉 |

while (Id) 〈stat〉 |

{ 〈stats〉 } |

Id ′=′ Id;

〈stats〉 → 〈stat〉 〈stats〉 |

ε

The grammarG1 is anLL(1) grammar. If〈stat〉 occurs as leftmost nonterminal in a sentential form
then the next input symbol determines which alternative must be applied. More precisely, it means that
for two derivations of the form

〈stat〉
∗

=⇒
lm

w 〈stat〉 α =⇒
lm

w β α
∗

=⇒
lm

wx

〈stat〉
∗

=⇒
lm

w 〈stat〉 α =⇒
lm

w γ α
∗

=⇒
lm

w y

it follows from x|1 = y|1 that β = γ. Is for instancex|1 = y|1 = if, then β = γ =
if (Id) 〈stat〉 else 〈stat〉. ⊓⊔

Definition 3.3.1 (simple LL(1)-grammar)
LetG be a context-free grammar withoutε-productions. If for each nonterminalN , each of its alterna-
tives begins with a different terminal symbol, thenG is called asimple LL(1) grammar. ⊓⊔

This is a first, easily checked criterion for a special case. The grammarG1 of Example 3.3.1 is a simple
LL(1) grammar.

Example 3.3.2We now add the following production to the grammarG1 of Example 3.3.1:

〈stat〉 → Id : 〈stat〉 | // labeled statement

Id (Id); // procedure call

The grammarG2 thus obtained is no longer anLL(1) grammar because it holds

〈stat〉
∗

=⇒
lm

w 〈stat〉 α =⇒
lm

w

β
︷ ︸︸ ︷

Id ′=′ Id; α
∗

=⇒
lm

wx

〈stat〉
∗

=⇒
lm

w 〈stat〉 α =⇒
lm

w

γ
︷ ︸︸ ︷

Id : 〈stat〉 α
∗

=⇒
lm

w y

〈stat〉
∗

=⇒
lm

w 〈stat〉 α =⇒
lm

w

δ
︷ ︸︸ ︷

Id(Id); α
∗

=⇒
lm

w z

with x|1 = y|1 = z|1 = Id, butβ, γ, δ are pairwise different.
However,G2 is aLL(2) grammar. For the three leftmost derivations given above holds,

x|2 = Id ′=′ y|2 = Id : z|2 = Id (

are pairwise different. And these are indeed the only critical cases. ⊓⊔

64 3 Syntactic Analysis

Example 3.3.3G3 possesses the productions

〈stat〉 → if (〈var〉) 〈stat〉 else 〈stat〉 |

while (〈var〉) 〈stat〉 |

{ 〈stats〉 } |

〈var〉 ′=′ 〈var〉; |

〈var〉;

〈stats〉 → 〈stat〉 〈stats〉 |

ε

〈var〉 → Id |

Id() |

Id(〈vars〉)

〈vars〉 → 〈var〉, 〈vars〉 |

〈var〉

The grammarG3 is for nok ≥ 1 anLL(k) grammar. To derive a contradiction assumeG3 were an
LL(k) grammar for ak > 0.

Let 〈stat〉 ⇒ β
∗

=⇒
lm

x and〈stat〉 ⇒ γ
∗

=⇒
lm

y with

x = Id (Id, Id, . . . , Id
︸ ︷︷ ︸

k

) ′=′ Id; andy = Id (Id, Id, . . . , Id
︸ ︷︷ ︸

k

);

We havex|k = y|k, but
β = 〈var〉 ′=′ 〈var〉 γ = 〈var〉;

and thereforeβ 6= γ. ⊓⊔

There exists, however, anLL(2)-grammar for the languageL(G3) of grammarG3, which can be ob-
tained fromG3 by factorization. Critical inG3 are the productions for assignment and procedure call.
Factorization introduces sharing of common prefixes of those productions. A new nonterminal sym-
bol follows this common prefix. The different continuationscan be derived from this nonterminal. The
productions

〈stat〉 → 〈var〉 ′=′ 〈var〉; | 〈var〉;

are replaced by
〈stat〉 → 〈var〉 Z

Z → ′=′ 〈var〉; | ;

Now, anLL(1) parser can decide between the critical alternatives using the next symbolsId and ’;’.

Example 3.3.4LetG4 = ({S,A,B}, {0, 1, a, b}, P4, S), where the setP4 of productions is given by

S → A | B

A → aAb | 0

B → aBbb | 1

Then
L(G4) = {an0bn | n ≥ 0} ∪ {an1b2n | n ≥ 0}

andG4 is noLL(k) grammar for anyk ≥ 1. To see this we consider the two leftmost derivations

S =⇒
lm

A
∗

=⇒
lm

ak0bk

S =⇒
lm

B
∗

=⇒
lm

ak1b2k

3.3 Top-down-Syntax Analysis 65

G4 is for nok ≥ 1 anLL(k) grammar since for eachk ≥ 1 it holds(ak0bk)|k = (ak1b2k)|k, but the
right sidesA andB for S are different. In this case one can show that for nok ≥ 1 there exists an
LL(k)-grammar for the languageL(G4). ⊓⊔

Theorem 3.3.1 The reduced context-free grammarG = (VN , VT , P, S) is anLL(k) grammar if and
only if for each two different productionsA→ β andA→ γ of G holds:

firstk(βα) ∩ firstk(γα) = ∅ for all α with S
∗

=⇒
lm

wAα

Proof. To prove the direction, ”⇒ ”, we assume,G were anLL(k) grammar, but there existed an
x ∈ firstk(βα) ∩ firstk(γα). According to the definition offirstk and becauseG is reduced there exist
derivations

S
∗

=⇒
lm

uAα=⇒
lm

uβα
∗

=⇒
lm

uxy

S
∗

=⇒
lm

uAα=⇒
lm

uγα
∗

=⇒
lm

uxz,

where in in the case|x| < k it must holdy = z = ε. β 6= γ implies thatG can not be anLL(k)
grammar—a contradiction to our assumption.

To prove the other direction, ”⇐ ”, we assume,G were not anLL(k) grammar. Then there exist
two leftmost derivations

S
∗

=⇒
lm

uAα=⇒
lm

uβα
∗

=⇒
lm

ux

S
∗

=⇒
lm

uAα=⇒
lm

uγα
∗

=⇒
lm

uy

with x|k = y|k, whereA→ β, A→ γ are different productions. Then the wordx|k = y|k is contained
in firstk(βα) ∩ firstk(γα) — a contradiction to the claim of the theorem.⊓⊔

Theorem 3.3.1 states that in anLL(k) grammar the application of two different productions to a left-
sentential form always leads to differentk-prefixes of the remaining input. Theorem 3.3.1 allows to
derive useful criteria for membership of certain subclasses ofLL(k) grammars. The first concerns the
casek = 1.

The setfirst1(βα) ∩ first1(γα) for all left-sentential formswAα and any two different alternatives
A→ β andA→ γ can be simplified tofirst1(β)∩ first1(γ), if neitherβ norγ produce the empty word
ε. This is the case if no nonterminal ofG is ε-produktiv.

Theorem 3.3.2 Let G be anε-free context-free grammar, that is, without productions of the form
X → ε. ThenG is anLL(1) grammar if and only if for each nonterminalX with the alternatives
X → α1 | . . . | αn the setsfirst1(α1), . . . , first1(αn) are pairwise disjoint.

In practice, it would be too hard a restriction to forbidε-productions. Consider the case that one of the
two right sidesβ or γ would produce the empty word. If bothβ as well asγ produce the empty word
G can not be anLL(1) grammar. Let us, therefore, assume thatβ

∗
=⇒ ε, but thatε can not be derived

from γ. However, then holds for all left-sentential formsuAα, u′Aα′:

first1(βα) ∩ first1(γα′) = first1(βα) ∩ first1(γ)⊙1 first1(α′)

= first1(βα) ∩ first1(γ)

= first1(βα) ∩ first1(γα)

= ∅

This implies that

first1(β) ⊙1 follow1(A) ∩ first1(γ)⊙1 follow1(A)

=
⋃
{first1(βα) | S

∗
=⇒
lm

uAα} ∩
⋃
{first1(γα′) | S

∗
=⇒
lm

u′Aα′}

= ∅

We, hereby, obtain the following theorem:

66 3 Syntactic Analysis

Theorem 3.3.3 A reduced context-free grammarG is anLL(1) grammar if and only if for each two
different productionsA→ β andA→ γ holds

first1(β) ⊙1 follow1(A) ∩ first1(γ)⊙1 follow1(A) = ∅ .

⊓⊔

The characterization of Theorem 3.3.3 is easily checked in contrast to the characterization of The-
orem 3.3.1. An even more easily checkable formulation is obtained by exploiting properties of 1-
concatenation.

Corollary 3.3.3.1 A reduced context-free grammarG is anLL(1) grammar if and only if for all alter-
nativesA→ α1 | . . . | αn holds

1. first1(α1), . . . , first1(αn) are pairwise disjoint; in particular, at most one of these sets containsε;
2. ε ∈ first1(αi) impliesfirst1(αj) ∩ follow1(A) = ∅ for all 1 ≤ j ≤ n, j 6= i. ⊓⊔

We extend the property of Theorem 3.3.3 to arbitrary lengthsk ≥ 1 of lookaheads.
A reduced context-free grammarG = (VN , VT , P, S) is calledstrongLL(k) grammar, if for each

two different productionsA→ β andA→ γ of a nonterminalA always holds

firstk(β)⊙k followk(A) ∩ firstk(γ)⊙k followk(A) = ∅.

According to this definition and Theorem 3.3.3 everyLL(1) grammar is a strongLL(1) grammar.
However, anLL(k) grammar fork > 1 is not automatically a strongLL(k) grammar. The reason is
that the setfollowk(A) contains the follow words ofall left sentential forms with occurrences ofA. In
contrast, theLL(k) condition only refers to follow words ofoneleft sentential form.

Example 3.3.5LetG be the context-free grammar with the productions

S → aAaa | bAba A→ b | ε

We check:

1. Fall: The derivation starts withS ⇒ aAaa. It holds first2(baa) ∩ first2(aa) = ∅.
2. Fall: The derivation starts withS ⇒ bAba. It holds first2(bba) ∩ first2(ba) = ∅.

HenceG is anLL(2) grammar according to Theorem 3.3.1. However, the grammarG is not a strong
LL(2)-grammar, because

first2(b)⊙2 follow2(A) ∩ first2(ε)⊙2 follow2(A)

= {b} ⊙2 {aa, ba} ∩ {ε} ⊙2 {aa, ba}

= {ba, bb} ∩ {aa, ba}

= {ba}

In the example,follow1(A) is too undifferentiated because it collects terminal follow words that may
occur indifferentsentential forms. ⊓⊔

3.3.3 Left Recursion

Deterministic parsers that construct the parse tree for theinput top downcannot deal withleft recursive
nonterminals. A nonterminalA of a context-free grammarG is called left recursive if there exists a
derivationA +

=⇒Aβ.

Theorem 3.3.4 LetG be a reduced context-free grammar.G is not anLL(k) grammar for anyk ≥ 1
if at least one nonterminal of the grammarG is left recursive.

3.3 Top-down-Syntax Analysis 67

Proof. LetX be a left recursive nonterminal of grammarG. For simplicity we assume thatG has a
productionX → Xβ. G is reduced. So, there must exist another productionX → α. If X occurs in a
left sentential form, that is,S

∗
=⇒
lm

uXγ, the alternativeX → Xβ can be applied arbitrarily often. For

eachn ≥ 1 there exists a leftmost derivation

S
∗

=⇒
lm

wXγ
n

=⇒
lm

wXβnγ .

Let us assume that grammarG were anLL(k) grammar. Theorem 3.3.1 implies

firstk(Xαn+1γ) ∩ firstk(αβnγ) = ∅.

Due toX → α we have
firstk(αβn+1γ) ⊆ firstk(Xβn+1γ),

hence also
firstk(αβn+1γ) ∩ firstk(αβnγ) = ∅.

If β ∗
=⇒ ε holds we immediately obtain a contradiction. Otherwise, wechoosen ≥ k and again obtain

a contradiction. Hence,G can not be anLL(k) grammar. ⊓⊔

We conclude that no generator ofLL(k) parsers can cope with left recursive grammars. However,
each grammar with left recursion can be transformed into a grammar without left recursion that de-
fines the same language. Let us assume for simplicity that thegrammarG has noε-productions (see

Exercise??) and no recursive chain productions, that is, there is no nonterminalA with A
+

=⇒
G

A. Let

G = (VN , VT , P, S). We construct forG a context-free grammarG′ = (V ′
N , VT , P

′, S) with the same
setVT of terminal symbols, the same start symbolS, a setV ′

N of nonterminal symbols

V ′
N = VN ∪ {〈A,B〉 | A,B ∈ VN},

and a set of productionsP ′

• IsB → aβ ∈ P for a terminal symbola ∈ VT , thenA→ aβ 〈A,B〉 ∈ P ′ for eachA ∈ VN ;
• IsC → Bβ ∈ P then〈A,B〉 → β〈A,C〉 ∈ P ′;
• Finally, 〈A,A〉 → ε ∈ P ′ for all A ∈ VN .

Example 3.3.6For the grammarG0 with the productions

E → E + T | T

T → T ∗ F | F

F → (E) | Id

we obtain after removal of non-productive nonterminals

E → (E) 〈E,F 〉 | Id 〈E,F 〉

〈E,F 〉 → 〈E, T 〉

〈E, T 〉 → ∗F 〈E, T 〉 | 〈E,E〉

〈E,E〉 → +T 〈E,E〉 | ε

T → (E) 〈T, F 〉 | Id 〈E,F 〉

〈T, F 〉 → 〈T, T 〉

〈T, T 〉 → ∗ F 〈T, T 〉 | ε

F → (E) 〈F, F 〉 | Id 〈F, F 〉

〈F, F 〉 → ε

GrammarG0 has three nonterminals and six productions, grammarG1, needs nine nonterminals and
15 productions.

68 3 Syntactic Analysis

The parse tree forId + Id according to grammarG0 is shown in Fig. 3.11(a), the one according
to grammarG1 in Fig. 3.11(b). The latter one has a definitely different structure. Intuitively, the gram-
mar generates directly the first possible terminal symbol and then in a backward fashion collects the
remainders of the right sides, which follow the left-side nonterminal symbol. The nonterminal〈A,B〉
stands for the job to return fromB back toA. ⊓⊔

We convince ourselves that the grammarG′ constructed from grammarG has the following properties:

• GrammarG′ has no left recursive nonterminals.
• there exists a leftmost derivation

A
∗

=⇒
G

Bγ =⇒
G

aβγ

if and only there exists a rightmost derivation

A=⇒
G′

aβ 〈A,B〉
∗

=⇒
G′

aβγ 〈A,A〉

in which after the first step only nonterminals of the form〈X,Y 〉 are replaced.

The last property implies, in particular, that grammarsG andG′ are equivalent, i.e., thatL(G) = L(G′)
holds.

In some cases, the grammar obtained by removing left recursion is anLL(k) grammar. This is the
case for grammarG0 of Example 3.3.6. We have already seen that the transformation to remove left
recursion also has disadvantages. Letn be the number of nonterminals. The number of nonterminals
as well as the number of productions can increase by a factor of n + 1. In large grammars, it might
be not advisable to perform this transformationmanually. A parser generator however, could do the
transformation automatically and also generate a program that would automatically convert parse trees
of the transformed grammar back into parse trees of the original grammar (see Exercise?? of the next
section). The user wouldn’t even see the grammar transformation.

Id 〈T, F 〉

ε

〈T, T 〉

〈E,E〉

ε

+Id

〈E,F 〉T

E

E

FT

F

〈E, T 〉

〈E,E〉

T

Id

E

+

Id

(b)(a)

Fig. 3.11. Parse trees forId + Id according to grammarG0 of Example 3.3.6 and according to the grammar after
removal of left recursion.

Example 3.3.6 illustrates how much the parse tree of a word according to the transformed grammar
can be different from the one according to the original grammar. The operator sits somewhat isolated

3.3 Top-down-Syntax Analysis 69

between its remotely located operands. An alternative to the elimination of left recursion are grammars
with regular right sides, which we will treat later.

3.3.4 StrongLL(k) Parsers

control

input tape

parser table

stack

output tape

w vu

ρ

M

π

Fig. 3.12. Schematic representation of a strongLL(k)-Parser.

Fig. 3.12 shows the structure of a parser for strongLL(k) grammars. The prefixw of the input is
already read. The remaining input starts with a prefixu of lengthk. The stack contains a sequence of
items of the context-free grammar. The topmost item, the actual state,Z, determines whether

• to read the next input symbol,
• to test for the successful end of the analysis, or
• to expand the actual nonterminal.

Upon expansion, the parser uses the parser table, to select the correct alternative for the nonterminal.
The parser tableM is a 2-dimensional array whose rows are indexed by the nonterminals and whose
columns are indexed by words of length at mostk. It represents a selection function

VN × V
≤k
T# → (VT ∪ VN)∗ ∪ {error }

which associates each nonterminal with the one of its alternatives that should be applied based on the
given lookahead. It could also signal an error if no alternative exists for the combination of actual state
and lookahead. Let[X → β.Y γ] be the topmost item on the stack andu be the prefix of lengthk of the
remaining input. IfM [Y, u] = (Y → α) then[Y → .α] will be the new topmost stack symbol and the
productionY → α is written to the output tape.

The table entries inM for a nonterminalY are determined in the following way: LetY → α1 |
. . . | αr be the alternatives forY . For a strongLL(k) grammar, the setsfirstk(αi) ⊙k followk(Y) are
disjoint. For each of theu ∈ firstk(α1)⊙k followk(Y) ∪ . . .∪, firstk(αr)⊙k followk(Y) is therefore

M [Y, u]← αi if and only if u ∈ firstk(αi)⊙k followk(Y)

Otherwise,M [Y, u] is set toerror . The entryM [Y, u] = error means that the actual nonterminal and
the prefix of the remaining input don’t go together. This means that a syntax error has been found. A

70 3 Syntactic Analysis

error-diagnosis and error-handling routine is started, which will attempt to continue the analysis. Such
approaches will be described in Section??.

Fork = 1, the construction of the parser table is particularly simple. Because of Corollary 3.3.3.1, it
works withoutk-concatenation. Instead, it suffices to testu for membership in one of the setsfirst1(αi)
and maybe infollow1(Y).

Example 3.3.7Table 3.3 is theLL(1)-parser table for the grammar of Example 3.2.13. Table 3.4
describes the run of the associated parser for inputId ∗ Id#. ⊓⊔

() + ∗ Id #

S E error error error E error

E (E) 〈E,F 〉 error error error Id 〈E, F 〉 error

T (E) 〈T, F 〉 error error error Id 〈T, F 〉 error

F (E) 〈F, F 〉 error error error Id 〈F, F 〉 error

〈E,F 〉 error 〈E,T 〉 〈E, T 〉 〈E, T 〉 error 〈E, T 〉

〈E, T 〉 error 〈E, E〉 〈E,E〉 ∗F 〈E, T 〉 error 〈E, E〉

〈E,E〉 error ε + T 〈E, E〉 error error ε

〈T, F 〉 error 〈T, T 〉 〈T, T 〉 〈T, T 〉 error 〈T, T 〉

〈T, T 〉 error ε ε ∗F 〈T, T 〉 error ε

〈F, F 〉 error ε ε ε error ε

Table 3.3. LL(1) parser table for the grammar of Example 3.2.13.

Stack Input

[S → .E] Id ∗ Id#

[S → .E][E → .Id 〈E, F 〉] Id ∗ Id#

[S → .E][E → Id . 〈E, F 〉] ∗Id#

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉] ∗Id#

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → . ∗ F 〈E, T 〉] ∗Id#

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → ∗ .F 〈E, T 〉] Id#

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → ∗ .F 〈E, T 〉][F → .Id 〈F, F 〉] Id#

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → ∗ .F 〈E, T 〉][F → Id. 〈F, F 〉] #

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → ∗ .F 〈E, T 〉][F → Id. 〈F, F 〉][〈F, F 〉 → .] #

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → ∗ .F 〈E, T 〉][F → Id 〈F, F 〉 .] #

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → ∗ F. 〈E, T 〉] #

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → ∗ F. 〈E, T 〉][〈E, T 〉 → . 〈E, E〉] #

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → ∗ F. 〈E, T 〉][〈E, T 〉 → . 〈E, E〉][〈E, E〉 → .] #

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → ∗ F. 〈E, T 〉][〈E, T 〉 → 〈E, E〉 .] #

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → . 〈E, T 〉][〈E, T 〉 → ∗ F 〈E, T 〉.] #

[S → .E][E → Id . 〈E, F 〉][〈E, F 〉 → 〈E, T 〉 .] #

[S → .E][E → Id 〈E, F 〉 .] #

[S → E.] #

Output:

(S → E) (E → Id 〈E, F 〉) (〈E, F 〉 → 〈E, T 〉) (〈E, T 〉 → ∗F 〈E,T 〉) (F → Id 〈F, F 〉)

(〈F, F 〉 → ε) (〈E, T 〉 → 〈E, E〉) (〈E, E〉 → ε)

Table 3.4. Parser run for inputId ∗ Id#

Our construction ofLL(k) parser are only applicable tostrongLL(k) grammars. This restriction,
however, is not really severe.

3.3 Top-down-Syntax Analysis 71

• The case occurring most often in practice is the casek = 1, and eachLL(1) grammar is a strong
LL(1) grammar.
• If a lookaheadk > 1 is needed, and is the grammarLL(k), but not strongLL(k), a general

transformation can be applied converting the grammar into astrongLL(k) grammar that accepts
the same language. (see Exercise 7).

We do, therefore, not describe a parsing method for arbitrary LL(k) grammars.

3.3.5 LL Parsers for Right-regular Context-free Grammars

Left-recursive nonterminals destroy the LL property of context-free grammars. Left recursion is mostly
used to describe sequences and lists of syntactic objects, like parameter lists and sequences of operands
connected by an associative operator. These can also be described by regular expressions. Thus, we want
to offer the best description comfort by admitting regular expressions on the right side of productions.

A right-regularcontext-free grammar is a tupleG = (VN , VT , p, S), whereVN , VT , S are as usual the
set of nonterminals, the set of terminals, and the start symbol. p : VN → RA is now a function from the
set of nonterminals into the setRAof regular expressions overVN ∪ VT . A pair (X, r) with p(X) = r
is written asX → r.

Example 3.3.8
A right-regular context-free grammar for arithmetic expressions is

Ge = ({S,E, T, F}, {id, (,),+,−, ∗, /}, p, S),

wherep is the following function (′{′ and′}′ are used as meta-characters to avoid the conflict with the
terminal symbols′(′ and′)′):
S → E
E → T {{+ | −}T }∗

T → F{{∗ | /}F}∗

F → (E) | id ⊓⊔

Definition 3.3.2 (regular derivation)
Let G be a right-regular context-free grammar. The relation=⇒

R,lm
on RA, directly derives leftmost,

regular, is defined by:

(a) wX β =⇒
R,lm

wαβ mit α = p(X)

(b) w (r1 | . . . | rn)β =⇒
R,lm

w ri β f"ur 1 ≤ i ≤ n

(c) w (r)∗ β =⇒
R,lm

w β

(d) w (r)∗ β =⇒
R,lm

w r (r)∗ β

Let
∗

=⇒
R,lm

be the die reflexive, transitive closure of=⇒
R,lm

. The language defined byG is L(G) = {w ∈

V ∗
T | S

∗
=⇒
R,lm

w} ⊓⊔

Example 3.3.9
A regular leftmost derivation for the wordid + id ∗ id of grammarGe of Example 3.3.8 is:
S =⇒

R,lm
E =⇒

R,lm
T {{+|−}T }∗

=⇒
R,lm

F{{∗|/}F}∗{{+|−}T }∗

=⇒
R,lm
{(E)|id}{{∗|/}F}∗{{+|−}T }∗

=⇒
R,lm

id{{∗|/}F}∗{{+|−}T }∗

72 3 Syntactic Analysis

=⇒
R,lm

id{{+|−}T }∗

=⇒
R,lm

id{+|−}T {{+|−}T }∗

=⇒
R,lm

id + T {{+|−}T }∗

=⇒
R,lm

id + F{{∗|/}F}∗{{+|−}T }∗

=⇒
R,lm

id + {(E)|id}{{∗|/}F}∗{{+|−}T }∗

=⇒
R,lm

id + id{{∗|/}F}∗{{+|−}T }∗

=⇒
R,lm

id + id{∗|/}F{{∗|/}F}∗{{+|−}T }∗

=⇒
R,lm

id + id ∗ F{{∗|/}F}∗{{+|−}T }∗

=⇒
R,lm

id + id ∗ {(E)|id}{{∗|/}F}∗{{+|−}T }∗

=⇒
R,lm

id + id ∗ id{{∗|/}F}∗{{+|−}T }∗

=⇒
R,lm

id + id ∗ id{{+|−}T }∗

=⇒
R,lm

id + id ∗ id ⊓⊔

Our goal is to develop an RLL parser, that is, a deterministictop down parser for right-regular
context-free grammars. This is the method of choice to implement a parser as long as no powerful and
comfortable tools offer an attractive alternative.

The RLL parser will produce a regular leftmost derivation for any correct input word. Looking at
the definition above makes clear that the case of expansion (a)—a nonterminal is replaced by its only
right side—is no longer critical. Instead, the cases (b), (c) and (d) need to be made deterministic.

We will call a parser for a right-regular context-free grammar an RLL(1) parser if it

• for each regular left-sentential formw(r1 | . . . | rn)β can take the decision for the right alternative,
• for each regular left-sentential formw(r)∗β can take the decision for the continuation or the termi-

nation of the iteration

based on the next input symbol of the remaining input. We transfer some notions to the case of right-
regular context-free grammars.

Definition 3.3.3 (regular subexpression)
ri, 1 ≤ i ≤ n, is direct regular subexpressionof (r1 | . . . | rn) and(r1 . . . rn); r is direct regular
subexpressionvon (r)∗ and ofr; r1 ist regular subexpressionof r2, if r1 = r2 or if r1 is a direct
regular subexpression ofr2 or regular subexpression of a direct regular subexpressionof r2. ⊓⊔

Definition 3.3.4 (extended context-free item)
A tuple (X,α, β, γ) is anextended context-free itemof a right-regular context-free grammarG =
(VN , VT , p, S) if X ∈ VN , α, β, γ ∈ (VN ∪ VT ∪ {(,), ∗, |, ε})∗, p(X) = βαγ andα is regular
subexpression ofβαγ. This item is written as[X → β.αγ]. ⊓⊔

Realizing an RLL(1) parser for a right-regular context-free grammar uses againfirst1- andfollow1sets,
this time of regular subexpressions of right sides of productions.

first1- and follow1- Computation for Right-regular Context-free Grammars

The computations offirst1- andfollow1-sets for right-regular context-free grammars can again berep-
resented as pure union-problems, and can, therefore, be efficiently solved. In the same way as in the
conventional case, this starts with the computation ofε-productivity. The equations forε-productivity
can be defined over the structure of regular expressions. Theε-productivity of right sides transfers to
the nonterminal of the left side.

3.3 Top-down-Syntax Analysis 73

eps(a) = false, for a ∈ VT

eps(ε) = true

eps(r∗) = true

eps(X) = eps(r), if p(X) = r forX ∈ VN

eps((r1| . . . |rn)) =
n∨

i=1

eps(ri)

eps((r1 . . . rn)) =

n∧

i=1

eps(ri)

(eps)

Example 3.3.10 (Continuation of Example 3.3.8)
For all nonterminals ofGe holds:eps(X) = false ⊓⊔

After ε-productivity is computed, theε-free first-function can be computed. This is specified by the
following equations:

eff(ε) = ∅

eff(a) = {a}

eff(r∗) = eff(r)

eff(X) = eff(r), if p(X) = r

eff((r1| . . . |rn)) =
⋃

1 ≤ i ≤ n
eff(ri)

eff((r1 . . . rn)) =
⋃

1 ≤ j ≤ n
{eff(rj) |

∧

1≤i<j

eps(ri)}

(eff)

Example 3.3.11 (Continuation of Example 3.3.8)
Theeff- and, therefore, also thefirst1-sets for the nonterminals of grammarGe are
first1(S) = first1(E) = first1(T) = first1(F) = {(, id} ⊓⊔

ε-productivity andε-free first-functions could be defined recursively over the structure of regular
expressions. Thefirst1-set of a regular expression is independent of the context inwhich it occurs.

This is different for thefollow1-set; two different occurrences of a regular (sub-) expression have
in general differentfollow1-sets. In realizing RLL(1) parsers, we are interested in thefollow1-sets of
occurrences of regular (sub-) expressions. A particular occurrence of a regular expression in a right side
corresponds to exactly one extended regular item in which the dot is positioned in front of this regular
expression. The following equations forfollow1 assume that concatenations and lists of alternatives are
surrounded on the outside by parentheses, but have no superfluous parentheses inside.

(1) follow1([S
′→ .S]) = {#} The eof symbol ’#’ follows after each input word.

(2) follow1([X → · · · (r1| · · · |.ri| · · · |rn) · · ·]) =
follow1([X → · · · .(r1| · · · |ri| · · · |rn) · · ·]) for 1 ≤ i ≤ n

(3) follow1([X → · · · (· · · .riri+1 · · ·) · · ·]) =

eff(ri+1) ∪

follow1([X → · · · (· · · ri.ri+1 · · ·) · · ·]),

if eps(ri+1) = true

∅ otherwise

(4) follow1([X → · · · (r1 · · · rn−1.rn) · · ·]) = (follow1)
follow1([X → · · · .(r1 · · · rn−1rn) · · ·])

(5) follow1([X → · · · (.r)∗ · · ·]) =
eff(r) ∪ follow1([X → · · · .(r)∗ · · ·])

(6) follow1([X → .r]) =
⋃

follow1([Y → · · · .X · · ·])

74 3 Syntactic Analysis

Example 3.3.12 (Continuation of Example 3.3.8)
Thefollow1-sets for some items to grammarGe are:
follow1([S → .E]) = {#}

follow1([E → T.{{+|−}T }∗])
(4)
=

follow1([E → .T {{+|−}T }∗])
(6)
=

follow1([S → .E]) ∪ follow1([F → (.E)]) =

({#} ∪ follow1([F → (.E)]))
(3)
= {),#}

follow1([T → F.{{∗|/}F}∗]) = {+,−,),#} ⊓⊔

To compute solutions foreff and follow1 as efficiently as possible, that is, in linear time, these
equation systems need to be brought into the form

f(X) = g(X) ∪
⋃

{f(Y) | X R Y }

with a known set-valued functiong and a binary relationR.
In the computation ofeff the base set ofR and the set of nodes of the directed graph induced byR

is the set of regular (sub-) expressions occurring in the production. A directed edge fromX to Y exists
if and only if eitherY is a direct subexpression ofX andY contributes to thefirst1-set ofX , or if X is
a nonterminal (occurrence) andY its right side. The functiong is only defined to be non-empty for the
case of a terminal symbols.

In the computation offollow1 the base set is the set of extended items, and the relation associates
such itemsj with an itemi, that contribute to thefollow1-set ofi. The functiong is defined using the
already computedeff-sets.

Definition 3.3.5 (RLL(1)-grammar)
A right-regular context-free grammarG = (VN , VT , p, S) is calledRLL(1) grammar if for all ex-
tended context-free items
[X → · · · .(r1| · · · |rn) · · ·] holds:
first1(ri)⊕1follow1([X → · · · .(r1| · · · |rn) · · ·]) ∩
first1(rj)⊕1follow1([X → · · · .(r1| · · · |rn) · · ·]) = ∅ for all i 6= j,
and for all extended context-free items[X → · · · .(r)∗ · · ·] holds:
first1(r) ∩ follow1([X → · · · .(r)∗ · · ·]) = ∅ andeps(r) = false. ⊓⊔

Once thefirst1- and follow1-sets for a right-regular context-free grammar are computed, and the
check for the RLL(1)-property has been successful, an RLL(1) parser for the grammar can be generated.
Two different representations are popular. The first consists of a driver, fixed for all grammars, and a
table specifically generated for each grammar. The driver indexes the table with the actual item and the
next input symbol, more precisely, some integer codes for these two. The selected entry in the table
indicates the next item or signals a syntax error.

The second representation is by a program. This program consists essentially of a set simultaneously
recursice procedures, one per nonterminal. The procedure for nonterminalX is in charge of analyzing
words forX . We first introduce the table version of RLL(1) parsers.

RLL(1) Parser for Right-regular Context-free Grammars (Ta ble Version)

The RLL(1) parser is a deterministic pushdown automaton. The parser tableM represents a selection
functionm : ItG × VT ; ItG ∪ {error}. The parser table is consulted when a decision has to be taken
by considering lookahead into the remaining input. Therefore,M has only rows for

• items in which an alternative needs to be chosen, and
• items in which an iteration needs to processed;

i.e. the functionm is defined for items of the form[X → · · · .(r1| · · · |rn) · · ·] and of the form
[X → · · · .(r)∗ · · ·].

3.3 Top-down-Syntax Analysis 75

The RLL(1) parser is started in an initial configuration(#[S′→ .S], w#). The actual item, the topmost
on the stack, determines whether the parser table should be consulted. If the table needs to be consulted
M [ρ, a] – if not error – indicates the next item for the actual itemρ and the actual input symbola. If
M [ρ, a] = error , a syntax error has been discovered. In the configuration(#[S′ → S.],#), the parser
accepts the input word.
The other transitions are:
δ([X → · · · .a · · ·], a) = [X → · · · a. · · ·]

δ([X → · · · .Y · · ·], ε) = [X → · · · .Y · · ·][Y → .p(Y)]

δ([X → · · · .Y · · ·][Y → p(Y).], ε) = [X → · · ·Y. · · ·]
In addition, there were some transitions, for example from[X → · · · (· · · |ri.| · · ·) · · ·] to [X →
· · · (· · · |ri| · · ·). · · ·], which neither read symbols, nor expand nonterminals, nor reduce to nontermi-
nals. They can be avoided by modifying the transition function in the following way:
(1) [X → · · · (· · · |ri.| · · ·) · · ·] ⇒ (2) [X → · · · (· · · |ri| · · ·). · · ·]

(3) [X → · · · (r.)∗ · · ·] ⇒ (4) [X → · · · .(r)∗ · · ·]

(5) [X → · · · .(r1 · · · rn) · · ·] ⇒ (6) [X → · · · (.r1 · · · rn) · · ·]
If a transition ofδ leads to(1), it is made to lead to the context-free item(2). If it leads to(3), it is

made to lead to(4), and from(5) directly to(6).
We present now the algorithm for the generation of the RLL(1)parser tables.

Algorithm RLL(1)-GEN

Input : RLL(1)-grammarG, first1 andfollow1 for G.
Output : parser tableM for RLL(1) parser forG.
Method: For all items of the form[X → · · · .(r1| · · · |rn) · · ·] set

M([X → · · · .(r1| · · · |rn) · · ·], a) = [X → · · · (· · · |.ri| · · ·) · · ·], for a ∈ first1(ri) and if in ad-
dition ε ∈ first1(ri) then also fora ∈ follow1([X → · · · .(r1| · · · |rn) · · ·]).
For all items of the form[X → · · · .(r)∗ · · ·] set

M([X → · · · .(r)∗ · · ·], a) =
{

[X → · · · (.r)∗ · · ·] if a ∈ first1(r)

[X → · · · (r)∗. · · ·] if a ∈ follow1([X → · · · .(r)∗ · · ·])

Set all not yet filled entries toerror.

Example 3.3.13 (Continuation of Example 3.3.8)
The parser table to grammarGe. (Rows and columns are exchanged for layout reasons.)

[E → T.{{+|−}T }∗] [T → F.{{∗|/}F}∗]

+ [E → T {{.+ |−}T }∗] [T → F{{∗|/}F}∗.]

− [E → T {{+|.−}T }∗] [T → F{{∗|/}F}∗.]

[E → T {{+|−}T }∗.] [T → F{{∗|/}F}∗.]

) [E → T {{+|−}T }∗.] [T → F{{∗|/}F}∗.]

∗ error [T → F{{. ∗ |/}F}∗]

/ error [T → F{{∗|./}F}∗]

Note that the construction of the table uses compression; from the item[E → T.{{+|−}T }∗] a di-
rect transition under+ into the item[E → T {{. + |−}T }∗] was entered. Analogously for− and
for the item[T → F.{{∗|/}F}∗] under∗ and/. Thereby, all items of the form[E → T {.{+|−}T }∗]
and[T → F{.{∗|/}F}∗] can be eliminated, and at compile time, the corresponding transitions can be
saved. ⊓⊔

Recursive descent RLL(1) Parser (Program Version)

A popular implementation method of RLL(1) parsers is in the form of a program. This implementation
can be automatically generated from an RLL(1)-grammar and itsfirst1- andfollow1-sets, but it can also

76 3 Syntactic Analysis

be written in the programming language of one’s choice. The latter is the implementation method as
long as no generator tool is available.

Let a right-regular context-free grammarG = (VN , VT , p, S) with VN = {X0, . . . , Xn}, S = X0,
p = {X0 7→ α0, X1 7→ α1, . . . , Xn 7→ αn} be given. We present recursive functionsp_progr and
progr that generate a so-calledrecursive descent parserfrom the grammarG and the computedfirst1-
undfollow1-sets.

For each production, this also means for each nonterminalX , a procedure with the nameX is
generated. The constructors for regular expressions on theright sides are translated into programming
language constructs such as switch-, while-, do-while-statements, into checks for terminal symbols,
and into recursive calls of procedures for nonterminals. The first1- andfollow1-sets of occurrences of
regular expressions are needed, for instance, to select theright one of several alternatives. Such an oc-
currence of a regular (sub-) expression corresponds exactly to an extended context-free item. The func-
tion progr is, therefore, recursively defined over the structure of context-free items of the grammarG.
The following functionFiFo is used in the case distinction for alternatives.FiFo([X → · · · .β · · ·]) =
first1(β)⊕1follow1([X → · · · .β · · ·]).

s t r u c t symbol nextsym ;

/∗ S t o r e s n e x t i n p u t symbol i n nex tsym∗ /
vo id scan () ;

/∗ P r i n t s t h e e r r o r message and
s t o p s t h e run o f t h e p a r s e r∗ /

vo id e r r o r (S t r i n g e r ro rMessage) ;

/∗ Announces t h e end o f t h e a n a l y s i s and
s t o p s t h e run o f t h e p a r s e r∗ /

vo id a c c e p t () ;

/∗ T r a n s l a t i n g t h e i n p u t grammar∗ /
p_p rog r (X0 → α0) ;
p_p rog r (X1 → α1) ;

...
p_p rog r (Xn → αn) ;

vo id p a r s e r () {
scan () ;
X0 () ;

i f (nextsym == " # ")
a c c e p t () ;

e l s e
e r r o r (". . .") ;

}

/∗ For a l l r u l e s l i k e t h i s. . . ∗ /
p_p rog r (X → .α)

/∗ . . .we c r e a t e an acco rd ing method l i k e t h i s .∗ /
vo id X() {

p r o g r ([X → .α]) ;
}

vo id p r o g r ([X → · · · .(α1|α2| · · · |αk−1|αk) · · ·]) {

3.3 Top-down-Syntax Analysis 77

swi tch () {
case (FiFo ([X → · · · (.α1|α2| · · · |αk−1|αk) · · ·])

. c o n t a i n s (nextsym)) :
p r o g r ([X → · · · (.α1|α2| · · · |αk−1|αk) · · ·]) ;

break ;
case (FiFo ([X → · · · (α1|.α2| · · · |αk−1|αk) · · ·])

. c o n t a i n s (nextsym)) :
p r o g r ([X → · · · (α1|.α2| · · · |αk−1|αk) · · ·]) ;

break ;
...

case (FiFo ([X → · · · (α1|α2| · · · |.αk−1|αk) · · ·])
. c o n t a i n s (nextsym)) :

p r o g r ([X → · · · (α1|α2| · · · |.αk−1|αk) · · ·]) ;
break ;
d e f a u l t :

p r o g r ([X → · · · (α1|α2| · · · |αk−1|.αk) · · ·]) ;
}

}

vo id p r o g r ([X → · · · .(α1α2 · · ·αk) · · ·]) {
p r o g r ([X → · · · (.α1α2 · · ·αk) · · ·]) ;
p r o g r ([X → · · · (α1.α2 · · ·αk) · · ·]) ;

...
p r o g r ([X → · · · (α1α2 · · · .αk) · · ·]) ;

}

vo id p r o g r ([X → · · · .(α)∗ · · ·]) {
whi le (FIRST1(α) . c o n t a i n s (nextsym)) {

p r o g r ([X → · · · .α · · ·]) ;
}

}

vo id p r o g r ([X → · · · .(α)+ · · ·]) {
do {

p r o g r ([X → · · · .α · · ·]) ;
} whi le (FIRST1(α) . c o n t a i n s (nextsym)) ;

}

vo id p r o g r ([X → · · · .ǫ · · ·]) {}

Fora ∈ VT is

vo id p r o g r ([X → · · · .a · · ·]) {
i f (nextsym == a)

scan () ;
e l s e

e r r o r (". . .") ;
}

ForY ∈ VN is

vo id p r o g r ([X → · · · .Y · · ·]) = vo id Y()

How does such a parser work? ProcedureX for a nonterminalX is in charge of recognizing words
for X . When it is called, the first symbol of the word to recognize has already been read by the combi-

78 3 Syntactic Analysis

nation scanner/screener, the procedurescan. When procedureX has found a word forX and returns,
it has already read the symbol following the found word.

The next section describes several modifications for the handling of syntax errors.
We now present the recursive descent parsers for the right-regular context-free grammarG for

arithmetic expressions.

Example 3.3.14 (Continuation of Example 3.3.8)
The following parser results from the schematic translation or the extended expression grammar. For
terminal symbols their string representation is used.

symbol nextsym ;

/∗ Retu rns n e x t i n p u t symbol∗ /
symbol scan () ;

/∗ P r i n t s t h e e r r o r message and
s t o p s t h e run o f t h e p a r s e r∗ /

vo id e r r o r (S t r i n g e r ro rMessage) ;

/∗ Announces t h e end o f t h e a n a l y s i s and
s t o p s t h e run o f t h e p a r s e r∗ /

vo id a c c e p t () ;

vo id S () {
E () ;

}

vo id E () {
T () ;
whi le (nextsym == "+" | | nextsym == "−") {

swi tch (nextsym) {
case "+" :

i f (nextsym == "+")
scan () ;

e l s e
e r r o r ("+ expec ted ") ;

break ;
d e f a u l t :

i f (nextsym == "−")
scan () ;

e l s e
e r r o r ("− expec ted ") ;

}

T () ;
}

}

vo id T () {
F () ;
whi le (nextsym == "∗ " | | nextsym == " / ") {

swi tch (nextsym) {
case " ∗ " :

i f (nextsym == "∗ ")
scan () ;

3.4 Bottom-up Syntax Analysis 79

e l s e
e r r o r ("∗ expec ted ") ;

break ;
d e f a u l t :

i f (nextsym == " / ")
scan () ;

e l s e
e r r o r (" / expec ted ") ;

}

F () ;
}

}

vo id F () {
swi tch (nextsym) {

case " (" :
E () ;
i f (nextsym == ") ")

scan () ;
e l s e

e r r o r (") expec ted ") ;
d e f a u l t :

i f (nextsym == " i d ")
scan () ;

e l s e
e r r o r (" i d expec ted ") ;

}
}

vo id p a r s e r () {
scan () ;
S () ;
i f (nextsym == " # ")

a c c e p t () ;
e l s e

e r r o r (" # expec ted ") ;
}

Some inefficiencies result from the schematic generation ofthis parser program. A more sophisti-
cated generation scheme will avoid most of these inefficiencies.

3.4 Bottom-up Syntax Analysis

3.4.1 Introduction

Bottom-upparsers read their input liketop-downparsers from left to right. They are pushdown automata
that can essentially do two kinds of operations:

• Read the next input symbol (shift), and
• Reduce the right side of a productionX → α at the top of the stack by the left sideX of the

production (reduce).

Because of these operations they are calledshift-reduceparsers.Shift-reduceparsers are right parsers;
they output the application of a production when they do a reduction. The result of the successful

80 3 Syntactic Analysis

analysis of an input word is a rightmost derivation in reverse order becauseshift-reduceparsers always
reduce at the top of the stack.

A shift-reduceparser must never miss arequiredreduction, that is, cover it in the stack by a newly
read input symbol. A reduction isrequired, if no rightmost derivation to the start symbol is possible
without it. A right side covered by an input symbol will neverreappear at the top of the stack and
can, therefore, never be reduced. A right side at the top of the stack that must be reduced to obtain a
derivation is called ahandle.

Not all occurrences of right sides that appear at the top of the stack are handles. Some reductions
performed at the top of the stack lead into dead ends, that is,they can not continued to a reverse
rightmost derivation although the input is correct.

Example 3.4.1LetG0 be again the grammar for arithmetic expressions with the productions:

S → E

E → E + T | T

T → T ∗ F | F

F → (E) | Id

Table 3.5 shows a successfulbottom-upanalysis of the wordId ∗ Id of G0. The third column lists
actions that were also possible, but would lead into dead ends. In the third step, the parser would miss
a required reduction. In the other two steps, the alternative reductions would lead into dead ends, that
is, not to right sentential forms.⊓⊔

Stack input Erroneous alternative actions

Id ∗ Id

Id ∗ Id

F ∗ Id Reading of∗ misses a required reduction

T ∗ Id reduction ofT to E leads into a dead end

T ∗ Id

T ∗ Id

T ∗ F reduction ofF to T leads into a dead end

T

E

S

Table 3.5. A successful analysis of the wordId ∗ Id together with potential dead ends.

Bottom-upparsers construct the parse tree from thebottom up. They start with the leaf word of the
parse tree, the input word, and construct for ever larger parts of the read input subtrees of the parse tree
by attaching the subtrees for the right sideα of a productionX → α below a newly createdX node
upon a reduction by this production. The analysis is successful if a parse tree with root labelS, the start
symbol of the grammar, has been constructed for the whole input word.

Fig. 3.13 shows some snapshots during the construction of the parse tree according to the derivation
shown in Table 3.5. The tree on the left contains all nodes that can be created when the inputId has
been read. The sequence of three trees in the middle represents the state before the handleT ∗ F is
being reduced, while the tree on the right shows the completeparse tree.

3.4.2 LR(k) Parsers

This section presents the most powerful deterministic method that worksbottom-up, LR(k) analysis.
The letterL says that the parsers of this class read their input from left to right, TheR characterizes

3.4 Bottom-up Syntax Analysis 81

Id∗

Id

F

T ∗

Id

F

Id

F

T ∗

Id

F

E

S

Id

F

T

T

Fig. 3.13.Construction of the parse tree after reading the first symbol, Id, together with the remaining input, before
the reduction of the handleT ∗ F , and the complete parse tree.

them as Right parser;k is the length of the considered lookahead.
We start again with the item-pushdown automatonPG for a context-free grammarG and transform

it into a shift-reduceparser. Let us look back at what we did in the case oftop-downanalysis. Sets of
lookahead words were computed from the grammar, which were used to select the right alternative for
a nonterminal atexpansion transitionsof PG. So, theLL(k) parser decides about the alternative for
a nonterminal at the earliest possible time, when the nonterminal has to be expanded.LR(k) parsers
follow a different strategy; they pursueall possibilities to expand and to read inparallel.

A decision has to be taken when one of the possibilities to continue asks for a reduction. What is
there to decide? There could be several productions by whichto reduce, and a shift could be possible
in addition to a reduction. The parser uses the nextk symbols to take its decision.

In this section, first anLR(0) parser is developed, which does not yet consider any lookahead.
Section 3.4.3 presents thecanonicalLR(k) parser. In Section 3.4.3, less powerful variants ofLR(k)
are described, which are often powerful enough for practice. Finally, Section 3.4.4 describes a error
recovery method forLR(k). Note that all context-free grammars are assumed to be reduced of non-
productive and unreachable nonterminals and extended by a new start symbol.

The Characteristic Finite-state Machine to a Context-freeGrammar

We attempt to representPG by a non-deterministic finite-state machine, itscharacteristic finite-state
machine, ch(G). SincePG is a pushdown automaton, this cannot easily work. An additional specifica-
tion of actions on the stack is necessary. These are associated with some states and some transitions of
ch(G).

Our goal is to arrive at a pushdown automaton who pursues all potential expansion and read tran-
sitions of the item pushdown-automaton in parallel and onlyat reduction decides which production
is the one to select. We define thecharacteristicfinite-state machinech(G) to a reduced context-free
grammarG. The states of the characteristic finite-state machinech(G) are the items[A→ α.β] of the
grammarG, that is, the states of the item pushdown-automatonPG. The set of input symbols of the
characteristic finite-state machinech(G) is VT ∪ VN , its initial state is the start item[S′ → .S] of the
item pushdown-automatonPG. The final states of the characteristic finit-state machine are the complete
items [X → α.]. Such a final state signals that the word just read corresponds to a stack contents of
the item pushdown-automaton in which a reduction with the productionA→ α can be performed. The
transition relation∆ of the characteristic finite-state machine consists of the transitions:

([X → α.Y β], ε, [Y → .γ]) for X → αY β ∈ P, Y → γ ∈ P

([X → α.Y β], Y, [X → αY.β]) for X → αY β ∈ P, Y ∈ VN ∪ VT

Reading a terminal symbolsa in char(G) corresponds to ashift transition of the item pushdown-
automaton undera. ε transitions ofchar(G) correspond to the expansion transitions of the item

82 3 Syntactic Analysis

pushdown-automaton. Whenchar(G) reaches a final state[X → α.] PG undertakes the following
actions: it removes the item[X → α.] on top of its stack and makes a transition underX from the new
state that has appears on top of the stack. This is a reductionmove of the item pushdown-automaton
PG.

Example 3.4.2LetG0 again be the grammar for arithmetic expressions with the productions

S → E

E → E + T | T

T → T ∗ F | F

F → (E) | Id

Fig. 3.14 shows the characteristic finite-state machine to grammarG0. ⊓⊔

[F → .Id] [F → Id.]

[T → T ∗ F.][T → T ∗ .F][T → T. ∗ F]

[E → E + T.]

E

[T → F.]

T

F

(E

∗

+E

T

T

F

)
[F → .(E)] [F → (.E)] [F → (E.)] [F → (E).]

Id

[T → .F]

[E → .T]

[S → .E] [S → E.]

[E → T.]

[T → .T ∗ F]

[E → .E + T] [E → E.+ T] [E → E + .T]

Fig. 3.14. The characteristic finite-state machinechar(G0) for the grammarG0.

The following theorem clarifies the exact relation between the characteristic finite-state machine and
the item pushdown automaton:

Theorem 3.4.1 LetG be a context-free grammar andγ ∈ (VT ∪VN)∗. The following three statements
are equivalent:

1. There exists a computation([S′ → .S], γ) ⊢
∗

char(G)
([A → α.β], ε) of the characteristic finite-state

machinechar(G).
2. There exists a computation(ρ [A→ α.β], w) ⊢

∗

PG
([S′ → S.], ε) of the item pushdown-automaton

PG such thatγ = hist(ρ) α holds.
3. There exists a rightmost derivationS′ ∗

=⇒
rm

γ′Aw =⇒
rm

γ′αβw with γ = γ′α. ⊓⊔

The equivalence of statements (1) and (2) means that words that lead to an item of the characteristic
finite-state machinechar(G) are exactly the histories of stack contents of the item pushdown-automaton
PG whose topmost symbol is this item and from whichPG can reach one of its final states assuming
appropriate inputw. The equivalence of statements (2) and (3) means that an accepting computation of

3.4 Bottom-up Syntax Analysis 83

the item pushdown-automaton for an input wordw that starts with a stack contentsρ corresponds to a
rightmost derivation that leads to a sentential formαw whereα is the history of the stack contentsρ.

We introduce some terminology before we prove Theorem 3.4.1. For a rightmost derivation
S′ ∗

=⇒
rm

γ′Av =⇒
rm

γαv and a productionA → α we callα thehandleof the right sentential formγαv.

Is the right sideα = α′β, the prefixγ = γ′α′ is called areliable prefixof G for the item[A → α′.β].
The item[A→ α.β] is valid for γ. Theorem 3.4.1, thus, means, that the set of words under which the
characteristic finite-state machine reaches an item[A→ α′.β] is exactly the set of reliable prefixes for
this item.

Example 3.4.3For the grammarG0 we have:

right sentential form handle reliable prefixess reason

E + F F E, E +, E + F S =⇒
rm

E =⇒
rm

E + T =⇒
rm

E + F

T ∗ Id Id T, T ∗, T ∗ Id S
3

=⇒
rm

T ∗ F =⇒
rm

T ∗ Id

⊓⊔

In a non-ambiguous grammar, the handle of a right sententialform is the uniquely determined word that
thebottom-upparser should replace by a nonterminal in the next reductionstep to arrive at a rightmost
derivation. A reliable prefix is a prefix of a right sententialform that does not properly extend beyond
the handle.

Example 3.4.4We give two reliable prefixes ofG0 and some items that are valid for them.

relaible prefix valid item reason

E + [E → E + .T] S =⇒
rm

E =⇒
rm

E + T

[T → .F] S
∗

=⇒
rm

E + T =⇒
rm

E + F

[F → .Id] S
∗

=⇒
rm

E + F =⇒
rm

E + Id

(E + ([F → (.E)] S
∗

=⇒
rm

(E + F) =⇒
rm

(E + (E))

[T → .F] S
∗

=⇒
rm

(E + (.T) =⇒
rm

(E + (F))

[F → .Id] S
∗

=⇒
rm

(E + (F) =⇒
rm

(E + (Id))

⊓⊔

Has, in the attempt to construct a rightmost derivation for aword, the prefixu of the word been reduced
to a reliable prefixγ, then each item[X → α.β], valid for γ, describes one possible interpretation of
the analysis situation. Thus, there is a rightmost derivation in whichγ is prefix of a right sentential form
andX → αβ is one of the possibly just processed productions. All such productions are candidates for
later reductions.

Consider the rightmost derivation

S′ ∗
=⇒
rm

γAw =⇒
rm

γαβw

It should be extended to a rightmost derivation of a terminalword. This requires that

1. β is derived to a terminal wordv, and after that,
2. α is derived to a terminal wordu.

Altogether,
S′ ∗

=⇒
rm

γAw =⇒
rm

γαβw
∗

=⇒
rm

γαvw
∗

=⇒
rm

γuvw
∗

=⇒
rm

xuvw

We now consider this rightmost derivation in the direction of reduction, that is, in the direction in which
a bottom-upparser constructs it. First,x is reduced toγ in a number of steps, thenu to α, thenv to
β. The valid item[A→ α.β] for the reliable prefixγα describes the analysis situation in which the
reduction ofu to α has already been done, while the reduction ofv to β has not yet started. A possible
long-range goal in this situation is the application of the productionX → αβ.

84 3 Syntactic Analysis

We come back to the question which language is accepted by thecharacteristic finite-state machine
of PG. Theorem 3.4.1 says thatchG goes under a reliable prefix into a state that is a valid item for this
prefix. Final states, i.e. complete items, are only valid forreliable prefixes where a reduction is possible
at their ends.

Proof of Theorem 3.4.1. We do a circular proof(1) ⇒ (2) ⇒ (3) ⇒ (1). Let us first assume
([S′ → .S], γ) ⊢

∗

char(G)
([A → α.β], ε). By induction over the numbern of ε transitions we construct a

rightmost derivationS′ rm
=⇒
∗
γAw

rm
=⇒ γαβw.

Ist n = 0, dann istγ = ε und [A → α.β] = [S′ → .S]. DaS′ rm
=⇒
∗
S′ gilt, ist die Behauptung in

diesem Fall erf"ullt. Istn > 0, betrachten wir den letztenε-"Ubergang. Dann l"asst sich die Berechnung
of the characteristic automaton zerlegen in:

([S′ → .S], γ) ⊢
∗

char(G)
([X → α′.Aβ′], ε) ⊢

char(G)
([A→ .αβ], α) ⊢

∗

char(G)
([A→ α.β], ε)

whereγ = γ′α. Nach Induktionsannahmegibt es eine rightmost derivationS′ rm
=⇒
∗
γ′′Xw′ rm

=⇒ γ′′α′Aβ′w′

mit γ′ = γ′′α′. Da die grammarG reduziert ist, gibt es ebenfalls eine rightmost derivationβ′ rm
=⇒
∗
v.

Deshalb haben wir:
S′ rm

=⇒
∗
γ′Avw′ rm

=⇒ γ′αβw

mit w = vw′. Damit ist die Richtung(1)⇒ (2) bewiesen.
Nehmen wir an, wir h"atten eine rightmost derivationS′ rm

=⇒
∗
γ′Aw

rm
=⇒ γ′αβw. Diese Ableitung

l"asst sich zerlegen in:

S′ rm
=⇒ α1X1β1

rm
=⇒
∗
α1X1v1

rm
=⇒
∗

. . .
rm
=⇒
∗

(α1 . . . αn)Xn(vn . . . v1)
rm
=⇒ (α1 . . . αn)αβ(vn . . . v1)

for Xn = A. Mit Induktion nachn folgt, dass(ρ, vw) ⊢
∗

KG
([S′ → S.], ε) gilt for

ρ = [S′ → α1.X1β1] . . . [Xn−1 → αn.Xnβn]

w = vvn . . . v1

sofernβ ∗
=⇒
rm

v, α1 = β1 = ε andX1 = S. Damit ergibt sich der Schluss(2)⇒ (3).

F"ur den letzten Schluss betrachten wir einen Kellerinhaltρ = ρ′ [A→ α.β] mit (ρ, w) ⊢
∗

KG
([S′ →

S.], ε). Zuerst "uberzeugen wir uns mit Induktion nach der Anzahl der "Uberg"ange in einer solchen
Berechnung, dassρ′ notwendigerweise von der Form:

ρ′ = [S′ → α1.X1β1] . . . [Xn−1 → αn.Xnβn]

ist for einn ≥ 0 andXn = A. Mit Induktion nachn folgt aber, dass([S′ → .S], γ) ⊢
∗

char(G)
([A →

α.β], ε) gilt for γ = α1 . . . αnα. Daγ = hist(ρ), gilt auch die Behauptung (1). Damit ist der Beweis
vollst"andig. ⊓⊔

The CanonicalLR(0) Automaton

In Chapter 2, we presented an algorithm which takes a non-deterministic finite-state machine and con-
structs an equivalent deterministic finite-state machine.This deterministic finite-state machine pursues
all paths in parallel which the non-deterministic automaton could take for a given input. Its states
are sets of states of the non-deterministic automaton. Thissubset constructionis now applied to the
characteristic finite-state machinechar(G) of a context-free grammarG. The resulting deterministic
finite-state machine is called thecanonicalLR(0) automaton forG and denote it byLR0(G).

3.4 Bottom-up Syntax Analysis 85

Example 3.4.5The canonicalLR(0) automaton for the context-free grammarG0 of Example 3.2.2
on page 39 is obtained by the application of the subset construction to the characteristic finite-state
machinechar(G0) of Fig. 3.14 on page 82. It is shown in Fig. 3.15 on page 85. It states are:

S0 = { [S → .E],

[E → .E + T],

[E → .T],

[T → .T ∗ F],

[T → .F],

[F → .(E)],

[F → .Id] }

S1 = { [S → E.],

[E → E.+ T] }

S2 = { [E → T.],

[T → T. ∗ F] }

S3 = { [T → F.] }

S4 = { [F → (.E)],

[E → .E + T],

[E → .T],

[T → .T ∗ F]

[T → .F]

[F → .(E)]

[F → .Id] }

S5 = { [F → Id.] }

S6 = { [E → E + .T],

[T → .T ∗ F],

[T → .F],

[F → .(E)],

[F → .Id] }

S7 = { [T → T ∗ .F],

[F → .(E)],

[F → .Id] }

S8 = { [F → (E.)],

[E → E.+ T] }

S9 = { [E → E + T.],

[T → T. ∗ F] }

S10 = { [T → T ∗ F.]}

S11 = { [F → (E).] }

S12 = ∅

⊓⊔

S10S7S2

S4 S11S8

S9S6

S3

S5

S1

S0

T

F

Id

)

(

∗ F

∗

+ T

E
F

+
(IdId

T

(

F

E

Id

(

Fig. 3.15. The transition diagram of theLR(0) automaton for the grammarG0 obtained from the characteristic
finite-state machinechar(G0) in Fig. 3.14. The error stateS12 = ∅ and all transitions into it are left out.

The canonicalLR(0) automatonLR0(G) to a context-free grammarG has some interesting properties.
Let LR0(G) = (QG, VT ∪ VN , ∆G, qG,0, FG), and let∆∗

G : QG × (VT ∪ VN)∗ → QG be the lifting
of the transition function∆G from symbols to words. We then have:

1. ∆∗
G(qG,0, γ) is the set of all items inIG for whichγ is a reliable prefix.

2. L(LR0(G)) is the set of all reliable prefixes for complete items[A→ α.] ∈ IG.

Reliable prefixes are prefixes of right-sentential forms, asthey occur during the reduction of an input
word. When a reduction is possible that will again lead to a right sentential-form This can only hap-
pen at the right end of this sentential form. An item valid fora reliable prefix describes one possible
interpretation of the actual analysis situation.

86 3 Syntactic Analysis

Example 3.4.6E+F is a reliable prefix for the grammarG0. The state∆∗
G0

(S0, E+F) = S3 is also
reached by the following reliable prefixes:

F , (F , ((F , (((F , . . .

T ∗ (F , T ∗ ((F , T ∗ (((F , . . .

E + F , E + (F , E + ((F , . . .

The stateS6 in the canonicalLR(0) automaton toG0 contains all valid items for the reliable prefix
E+, namely the items

[E → E + .T], [T → .T ∗ F], [T → .F], [F → .Id], [F → .(E)].

For E+ is a prefix of the right sentential formE + T :

S =⇒
rm

E =⇒
rm

E + T =⇒
rm

E + F =⇒
rm

E + Id

↑ ↑ ↑

Valid are for instance [E → E + .T] [T → .F] [F → .Id]
⊓⊔

The canonicalLR(0) automatonLR0(G) to a context-free grammarG is a deterministic finite-state
machine that accepts the set of reliable prefixes to completeitems. In this way, it identifies positions
for reduction, and, therefore, offers itself for the construction of a right parser. Instead of items (as
the item-pushdown automaton) this parser stores on its stack states of the canonicalLR(0) automaton,
that is setsof items. The underlying pushdown automataP0 is defined as the tupleK0 = (QG ∪
{f}, VT , ∆0, qG,0, {f}). The set of states is the setQG of states of the canonicalLR(0) automaton
LR0(G), extended by a new statef , the final state. The initial state ofP0 is identical to the initial state
qG,0 of LR0(G); The transition relation∆0 consists of the following kinds of transitions:

Read: (q, a, q δG(q, a)) ∈ ∆0, if δG(q, a) 6= ∅. This transition reads the next input symbola and
pushes the successor stateq undera onto the stack. It can only be taken if at least one item of the
form [X → α.aβ] is contained inq.

Reduce:(qq1 . . . qn, ε, q δG(q,X)) ∈ ∆ if [X → α.] ∈ qn holds with |α| = n. The complete item
[X → α.] in the topmost stack entry signals a potential reduction. Asmany entries are removed
from the top of the stack as the length of the right side indicates. After that, theX successor of the
new topmost stack entry is pushed onto the stack.
Fig. 3.16 shows a part of the transition diagram of aLR(0) automatonLR0(G) that demonstrates
this situation. Theα path in the transition diagram corresponds to|α| entries on top of the stack.
These entries are removed at reduction. The new actual state, previously below these removed
entries, has a transition underX , which is now taken.

Finish: (qG,0 q, ε, f) if [S′ → S.] ∈ q. This transition is the reduction transition to the production
S′ → S. The property[S′ → S.] ∈ q signals that a word was successfully reduced to the start
symbol. This transition empties the stack and inserts the final statef .

The special case[X → .] merits special consideration. According to our description, |ε| = 0 topmost
stack entries need to be removed from the stack upon this reduction, and a transition from the new,
and old, actual stateq underX should be taken, and the state∆G(q,X) is pushed onto the stack.
This transition is possible since by construction it holds that with the item[· · · → · · · .X · · ·] also the
item [X → .α] is contained in stateq for each right sideα of nonterminalX . In the special case of a
ε production, the actual stateq contains together with the item[· · · → · · · .X · · ·] also the complete
item [X → .]. This latter reduction transitionextends the lengthof the stack.

The construction ofLR0(G) guarantees that for each non-initial and non-final stateq there exists
exactly one entry symbol under which the automaton can make atransition intoq. The stack contents
q0, . . . , qn mit q0 = qG,0 corresponds, therefore, to a uniquely determined wordα = X1 . . . Xn ∈
(VT ∪ VN)∗ for which∆G(qi, Xi+1) = qi+1 holds. This wordα is a reliable prefix, andqn is the set
of all items valid forα.

3.4 Bottom-up Syntax Analysis 87

X

α

[X → α.]

· · ·

· · ·

[· · · → · · ·X. · · ·]

· · ·

[· · · → · · · .X · · ·]

[X → .α]

Fig. 3.16. Part of the transition diagram of a canonicalLR(0) automaton.

The pushdown automatonP0 just constructed is not necessarily deterministic. There are two kinds
of conflicts that cause non-determinism:

shift-reduce conflict:a stateq allows a read transition under a symbola ∈ VT as well as a reduce or
finish transition, and

reduce-reduce conflict:a stateq permits reduction transitions according to two different productions.

In the first case, the actual state contains at least one item[X → α.aβ] and at least one complete item
[Y → γ.]; in the second case,q contains two different complete items[Y → α.], [Z → β.]. A stateq
of theLR(0) automaton with one of these properties is calledLR(0) inadequate. Otherwise, we callq
LR(0) adequate. Es gilt:

Lemma 3.4.For anLR(0) adequatestateq there are three possibilities:

1. The stateq contains no complete item.
2. The stateq consists of exactly one complete item[A→ α.];
3. The stateq contains exactly one complete item[A→ .], and all non-complete items inq are of the

form [X → α.Y β], where all rightmost derivations forY that lead to a terminal word are of the
form:

Y
∗

=⇒
rm

Aw =⇒
rm

w

for aw ∈ V ∗
T . ⊓⊔

Inadequate states of the canonicalLR(0) automaton make the pushdown automataP0 non-deterministic.
We obtain deterministic parsers by permitting the parser tolook ahead into the remaining input to select
the correct action in inadequate states.

Example 3.4.7The statesS1, S2 andS9 of the canonicalLR(0) automaton in Fig. 3.15 areLR(0)
inadequate. In stateS1, the parser can reduce the right sideE to the left sideS (complete item[S → E.])
and it can read the terminal symbol+ in the input (item[E → E. + T]). In stateS2 the parser can
reduce the right sideT to E (complete item[E → T.]) and it can read the terminal symbol∗ (item
[T → T. ∗ F]). In stateS9 finally, the parser can reduce the right sideE + T to E (complete item
[E → E + T.]), and it can read the terminal symbol∗ (item [T → T. ∗ F]). ⊓⊔

Direct Construction of the CanonicalLR(0) Automaton

The canonicalLR(0) automatonLR0(G) to a context-free grammarG needs not be derived through
the construction of the characteristic finite-state machine char(G) and the subset construction. It can
be constructed directly fromG. The construction uses a function∆G,ε that adds to each setq of items
all items that are reachable byε transitions of the characteristic finite-state machine. The set∆G,ε(q)
is the least solution of the following equation

I = q ∪ {[A→ .γ] | ∃X → αAβ ∈ P : [X → α.Aβ] ∈ I}

Similar to the functionclosure() of the subset construction it can be computed by

88 3 Syntactic Analysis

set〈item〉 closure(set〈item〉 q) {

set〈item〉 result ← q;

list〈item〉 W ← list_of(q);

symbol X ; string〈symbol 〉 α;

while (W 6= []) {

item i← hd(W); W ← tl(W);

switch (i) {

case [_→ _ .X _] : forall (α : (X → α) ∈ P)

if ([X → .α] 6∈ result) {

result ← result ∪ {[X → .α]};

W ← [X → .α] ::W ;

}

default : break;

}

}

return result ;

}

whereV is the set of symbolsV = VT ∪ VN . The setQG of states and the transition relation∆G are
computed by first constructing the initial stateqG,0 = ∆G,ε({[S′ → .S]}) and then adding successor
states and transitions until all successor states are already in the set of constructed states. To implement
it we specialize the functionnextState() of the subset construction:

set〈item〉 nextState(set〈item〉 q, symbol X) {

set〈item〉 q′ ← ∅;

nonterminal A; string〈symbol 〉 α, β;

forall (A,α, β : ([A→ α.Xβ] ∈ q))

q′ ← q′ ∪ {[A→ αX.β]};

return closure(q′);

}

As in the subset construction, the set of statesstatesand the set of transitionstranscan be computed
iteratively:

3.4 Bottom-up Syntax Analysis 89

list〈set〈item〉〉 W ;

set〈item〉 q0 ← closure({[S′ → .S]});

states ← {q0}; W ← [q0];

trans ← ∅;

set〈item〉 q, q′;

while (W 6= []) {

q ← hd(W); W ← tl(W);

forall (symbol X) {

q′ ← nextState(q,X);

trans ← trans ∪ {(q,X, q′)};

if (q′ 6∈ states) {

states ← states ∪ {q′};

W ← q′ ::W ;

}

}

}

3.4.3 LR(k): Definition, Properties, and Examples

We call a context-free grammarG anLR(k)-grammar, if in each of its rightmost derivationsS′ =
α0 =⇒

rm
α1 =⇒

rm
α2 · · · =⇒

rm
αm = v and each right sentential formsαi occurring in the derivation

• the handle can be localized, and
• the production to be applied can be determined

by consideringαi from the left to at mostk symbols following the handle. In anLR(k)-grammar,
the decomposition ofαi into γβw and the determination ofX → β, such thatαi−1 = γXw holds is
uniquely determined byγβ andw|k. Formally, we callG anLR(k)-grammar if

S′ ∗
=⇒
rm

αXw =⇒
rm

αβw and

S′ ∗
=⇒
rm

γY x=⇒
rm

αβy and

w|k = y|k implies α = γ ∧X = Y ∧ x = y.

Example 3.4.8LetG be the grammar with the productions

S → A | B A→ aAb | 0 B → aBbb | 1

ThenL(G) = {an0bn | n ≥ 0} ∪ {an1b2n | n ≥ 0}. We know already thatG is for nok ≥ 1 an
LL(k)-grammar. GrammarG is anLR(0)-grammar, though.

The right sentential forms ofG have the form

S, A, B, anaAbbn, anaBbbb2n, ana0bbn, ana1bbb2n

for n ≥ 0. The handles are always underlined. Two different possibilities to reduce exist only in the
case of right sentential formsanaAbbn andanaBbbb2n One could reduceanaAbbn to anAbn and to
anaSbbn. The first choice belonged to the rightmost derivation

S
∗

=⇒
rm

anAbn =⇒
rm

anaAbbn

the second to no rightmost derivation. The prefixan of anAbn uniquely determines, whetherA is the
handle, namely in the casen = 0, or whetheraAb is the handle, namely in the casen > 0. The right
sentential formsanBb2n are handled analogously.⊓⊔

90 3 Syntactic Analysis

Example 3.4.9The grammarG1 with the productions

S → aAc A→ Abb | b

and the languageL(G1) = {ab2n+1c | n ≥ 0} is anLR(0)-grammar. In a right sentential form
aAbbb2nc only the reduction toaAb2nc is possible as part of a rightmost derivation. The prefixaAbb
uniquely determines this. For the right sentential formabb2nc, b is the handle, and the prefixab uniquely
determines this. ⊓⊔

Example 3.4.10The grammarG2 with the productions

S → aAc A→ bbA | b

and the languageL(G2) = L(G1) is anLR(1)-grammar. The critical right sentential forms have the
form abnw. If 1 : w = b, the handle lies inw; if 1 : w = c, the lastb in bn forms the handle. ⊓⊔

Example 3.4.11The grammarG3 with the productions

S → aAc A→ bAb | b

and the languageL(G3) = L(G1) is not anLR(k)-grammar for anyk ≥ 0. For, letk be arbitrary, but
fix. Consider the two rightmost derivations

S
∗

=⇒
rm

abnAbnc=⇒
rm

abnbbnc

S
∗

=⇒
rm

abn+1Abn+1c=⇒
rm

abn+1bbn+1c

with n ≥ k. With the names introduced in the definition ofLR(k)-grammar, we haveα = abn, β =
b, γ = abn+1, w = bnc, y = bn+2c. Herew|k = y|k = bk. α 6= γ implies thatG3 can be noLR(k)-
grammar. ⊓⊔

The following theorem clarifies the relation between the definition ofLR(0)-grammar and the proper-
ties of the canonicLR(0) automaton.

Theorem 3.4.2 A context-free grammarG is anLR(0)-grammar if and only if the canonicalLR(0)
automaton forG has noLR(0)-inadequate states.

Proof: ” ⇒ ” Let G eineLR(0)-grammar, and nehmen wir an, der canonicalLR(0) automaton
LR0(G) habe einen einenLR(0)-inadequaten statep.

Fall 1: The statep hat einenreduce-reduce-conflict, d.h.p enth"alt zwei verschiedene items[X → β.], [Y → δ.].
Dem statep zugeordnet ist eine nichtleere Menge von reliable prefixesn. Let γ = γ′β ein solches reli-
able prefix. Weil beide items valid forγ sind, gibt es rightmost derivations

S′ ∗
=⇒
rm

γ′Xw =⇒
rm

γ′βw und

S′ ∗
=⇒
rm

νY y =⇒
rm

νδy mit νδ = γ′β = γ

Das ist aber ein Widerspruch zurLR(0)-Eigenschaft.

Fall 2: statep hat einenshift-reduce-conflict, d.h.p enth"alt items[X → β.] and[Y → δ.aα]. Let γ
ein reliable prefix for beide item Weil beide items valid forγ sind, gibt es rightmost derivations

S′ ∗
=⇒
rm

γ′Xw =⇒
rm

γ′βw und

S′ ∗
=⇒
rm

νY y =⇒
rm

νδaαy mit νδ = γ′β = γ

Ist β′ ∈ V ∗
T , erhalten wir sofort einen Widerspruch. Andernfalls gibt es eine rightmost derivation

α
∗

=⇒
rm

v1Xv3 =⇒
rm

v1v2v3

3.4 Bottom-up Syntax Analysis 91

Weil y 6= av1v2v3y gilt, ist dieLR(0)-Eigenschaft verletzt.

” ⇐ ” Nehmen wir an, der canonicalLR(0) automatonLR0(G) habe keineLR(0)-inadequaten
states. Betrachten wir die zwei rightmost derivations:

S′ ∗
=⇒
rm

αXw =⇒
rm

αβw

S′ ∗
=⇒
rm

γY x=⇒
rm

αβy

Zu zeigen ist, dassα = γ, X = Y, x = y gelten. Letp der state of the canonicalLR(0) automaton
nach Lesen vonαβ. Dann enth"altp alle forαβ valid items . Nach Voraussetzung istp LR(0)-geeignet.
Wir unterscheiden zwei F"alle:

Fall 1: β 6= ε. Wegen Lemma 3.4 istp = {[X → β.]}, d.h. [X → β.] ist das einzige valid item for
αβ. Daraus folgt, dassα = γ, X = Y andx = y sein muss.

Fall 2: β = ε. Nehmen wir an, die zweite rightmost derivation widerspreche derLR(0)-Bedingung.
Dann gibt es ein weiteres item[X → δ.Y ′η] ∈ p, so dassα = α′δ ist. The letzte Anwendung einer
production in der unteren rightmost derivation ist die letzte Anwendung einer production in einer ter-
minalen rightmost derivation forY ′. Nach Lemma 3.4 folgt daraus, dass die untere Ableitung gegeben
ist durch:

S′ ∗
=⇒
rm

α′δY ′w
∗

=⇒
rm

α′δXvw =⇒
rm

α′δvw

wobeiy = vw ist. Damit giltα = α′δ = γ, Y = X andx = vw = y – im Widerspruch zu unserer
Annahme. ⊓⊔

Let us conclude. We have seen how to construct theLR(0) automatonLR0(G) from a given context-
free grammarG. This can be done either directly of through the characteristic finite-state machine
char(G). From the deterministic finite-state machineLR0(G) one can construct a pushdown automata
P0. This pushdown automatonP0 is deterministic ifLR0(G) does not containLR(0)-inadequate states.
Theorem 3.4.2 states this is exactly the case if the grammarG is anLR(0)-grammar. We have thereby
met a method to generate parsers forLR(0)-grammars.

In real life,LR(0)-grammars are rather rare. Often lookahead of lengthk > 0 needs to be used
to select between the different choices of a parsing situation. In anLR(0) parser, the actual state de-
termines what the next action is, independently of the next input symbols.LR(k) parsers fork > 0
have states consisting of sets of items. A different kind of items are used, though, so-calledLR(k)-
items.LR(k)-items are context-free items, extended by lookahead words. An LR(k)-item is of the
form i = [A → α.β, x] for a productionA → αβ of G and a wordx ∈ (V k

T ∪ V
<k
T #). The context-

free item[A → α.β] is called thecore, the wordx the lookaheadof theLR(k)-itemsi. The set of
LR(k)-items of grammarG is written asIG,k. TheLR(k)-item [A → α.β, x] is valid for a reliable
prefixγ, if there exists a rightmost derivation

S′#
∗

=⇒
rm

γ′Xw# =⇒
rm

γ′αβw#

with x = (w#)|k. A context-free item[A→ α.β] can be understood as anLR(0)-item that is extended
by lookaheadε.

Example 3.4.12Consider again grammarG0. We have:

(1) [E → E + .T,)]

[E → E + .T, +] are validLR(1)-items for the prefix(E+

(2) [E → T., ∗] is not a validLR(1)-item for any reliable prefix.

To see observation (1), consider the two rightmost derivations:

S′ ∗
=⇒
rm

(E) =⇒
rm

(E + T)

S′ ∗
=⇒
rm

(E + Id) =⇒
rm

(E + T + Id)

Observation (2) follows since the subwordE∗ can occur in no right sentential form.⊓⊔

92 3 Syntactic Analysis

The folllowing theorem gives a characterization of theLR(k)-property based on validLR(k)-items.

Theorem 3.4.3 LetG be a context-free grammar. For a reliable prefixγ let It(γ) be the set ofLR(k)-
items ofG that are valid forγ.

The grammarG is anLR(k)-grammar if and only if for all reliable prefixesγ and allLR(k)-items
[A→ α., x] ∈ It(γ) holds:

1. if there is anotherLR(k)-item [X → δ., y] ∈ It(γ), thenx 6= y.
2. is there anotherLR(k)-item [X → δ.aβ, y] ∈ It(γ), thenx 6∈ firstk(aβ)⊙k {y}. ⊓⊔

Theorem 3.4.3 suggests to defineLR(k)-adequate andLR(k)-inadequate sets of items also for
k > 0. Let I be a set ofLR(k)-items. I has areduce-reduce-conflict, if there areLR(k)-items
[X → α., x], [Y → β., y] ∈ I with x = y. I has ashift-reduce-conflict, if there areLR(k)-items
[X → α.aβ, x], [Y → γ., y] ∈ I with

y ∈ {a} ⊙k firstk(β)⊙k {x}

Fork = 1 this condition is simplified toy = a.
The setI is calledLR(k)-inadequate, if it has areduce-reduce- or a shift-reduce-conflict. Other-

wise, we call itLR(k)-adequate.
TheLR(k)-property means that when reading a right sentential form, acandidate for a reduction

together with production to be applied can be uniquely determined by the help of the associated reliable
prefixes and thek next symbols of the input. However, if we were to tabulate allcombinations of
reliable prefixes with words of lengthk this would be infeasible since, in general, there are infinitely
many reliable prefixes. In analogy to our way of dealing withLR(0)-grammars one could construct a
canonicalLR(k)-automaton. The canonicalLR(k)-automatonLRk(G) is a deterministic finite-state
machine. Its states are sets ofLR(k)-items. For each reliable prefixγ the deterministic finite-state
machineLRk(G) determines the set ofLR(k)-items that are valid forγ. Theorem 3.4.3 helps us in
our derivation. It says that for anLR(k)-grammar, the set ofLR(k)-items valid forγ together with the
lookahead determines uniquely whether to reduce in the nextstep, and if so, by which production.

In much the same way as theLR(0) parser stores states of the canonicalLR(0) automaton on its
stack, theLR(k) parser stores states of the canonicalLR(k)-automaton on is stack. The selection of
the right of several possible actions of theLR(k) parser is controlled by theaction-table. This table
contains for each combination of state and lookahead one of the following entries:

shift: read the next input symbol;

reduce(X → α): reduce by productionX → α;

error: report error

accept: announce successful end of the parser run

A second table, thegoto-table, contains the representation of the transition function of the canonic
LR(k)-automatonLRk(G). It is consulted after ashift-action or areduce-action to determine the new
state on top of the stack. Upon ashift, it computes the transition under the read symbol out of the actual
state. Upon a reduction byX → α, it gives the transition underX out of the state underneath those
stack symbols that belong toα. These two tables fork = 1 are shown in Fig. 3.17.

TheLR(k) parser for a grammarG needs a program that interprets theaction- andgoto-table, the
driver. Again, we consider the casek = 1. This is, in principle, sufficient because for each language
that has anLR(k)-grammar and therefore also anLR(k) parser one can construct anLR(1)-grammar
and consequently also anLR(1) parser. Let us assume that the set of states of theLR(1) parser were
Q. One such driver program then is:

3.4 Bottom-up Syntax Analysis 93

action-table goto-table

VT ∪ {#} VN ∪ VT

Q

x

q
parser action

for (q, x)

Q

X

q δd(q, X)

Fig. 3.17. Schematic representation ofaction- andgoto-table of anLR(1) parser with set of statesQ.

list〈state〉 stack ← [q0];

terminal buffer ← scan();

state q; nonterminal X ; string〈symbol〉 α;

while (true) {

q ← hd(stack);

switch (action [q, buffer]) {

case shift : stack ← goto[q, buffer] :: stack ;

buffer ← scan();

break;

case reduce(X → α) : output(X → α);

stack ← tl(|α|, stack); q ← hd(stack);

stack ← goto[q,X] :: stack ;

break;

case accept : stack ← f :: tl(2, stack);

return accept ;

case error : output(′′. . .′′); goto err ;

}

The functionlist〈state〉 tl(int n, list〈state〉 s) returns in its second argument the lists with the
topmostn elements removed. As with the driver program forLL(1) parsers, in the case of an error, it
jumps to a labelerr at which the code for error handling is to be found.

We present three approaches to construct anLR(1) parser for a context-free grammarG. The most
general method is the canonicalLR(1)-method. For eachLR(1)-grammarG there exists a canonical
LR(1) parser. The number of states of this parser can be large. Therefore, other methods were proposed
that have state sets of the size of theLR(0) automaton. Of these we consider theSLR(1)- and the
LALR(1)-method.

The described driver program forLR(1) parsers works for all three parsing methods; the driver in-
terprets theaction- and agoto-table, but their contents are computed in different ways. In consequence,
the actions for some combinations of state and lookahead maybe different.

Construction of an LR(1) Parser

TheLR(1) parser is based on the canonicalLR(1)-automatonLR1(G). Its states, therefore, are sets of
LR(1)-items. We construct the canonicalLR(1)-automaton much in the same way as we constructed
the canonicalLR(0) automaton. The only difference is thatLR(1)-items are used instead ofLR(0)-
items. This means that the lookahead symbols need to be computed when the closure of a setq of

94 3 Syntactic Analysis

LR(1)-items underε-transitions is formed. This set is the least solution of thefollowing equation

I = q ∪ {[A→ .γ, y] | ∃X → αAβ ∈ P : [X → α.Aβ, x] ∈ I, y ∈ first1(β)⊙1 {x}}

It is computed by the following function

set〈item1〉 closure(set〈item1〉 q) {

set〈item1〉 result ← q;

list〈item1〉 W ← list_of(q);

nonterminal X ; string〈symbol〉 α, β; terminal x, y;

while (W 6= []) {

item1 i← hd(W); W ← tl(W);

switch (i) {

case [_→ _ .Xβ, x] :

forall (α : (X → α) ∈ P)

forall (y ∈ first1(β)⊙1 {x})

if ([X → .α, y] 6∈ result) {

result ← result ∪ {[X → .α, y]};

W ← [X → .α, y] ::W ;

}

default : break;

}

}

return result ;

}

whereV is the set of all symbols,V = VT ∪ VN . The initial stateq0 of LR1(G) is

q0 = closure({[S′ → .S,#]})

We need a functionnextState() that computes the successor state to a given setq of LR1-items and a
symbolX ∈ V = VN ∪ VT . The corresponding function for the construction ofLR0(G) needs to be
extended by the compute the lookahead symbols:

set〈item1〉 nextState(set〈item1〉 q, symbol X) {

set〈item1〉 q
′ ← ∅;

nonterminal A; string〈symbol〉 α, β; terminal x;

forall (A,α, β, x : ([A→ α.Xβ, x] ∈ q))

q′ ← q′ ∪ {[A→ αX.β, x]};

return closure(q′);

}

The set of states and the transition relation of the canonical LR(1)-automaton is computed in analogy
to the canonicalLR(0)-automaton. The generator starts with the initial state andan empty set of tran-
sitions and adds successors states until all successor states are already contained in the set of computed
states. The transition function of the canonicalLR(1)-automaton gives thegoto-table of theLR(1)
parser.

Let us turn to the construction of theaction-table of theLR(1) parser. Noreduce-reduce-conflict
exists in a stateq of the canonicalLR(1)-automaton with completeLR(1)-items[X → α., x], [Y →
β., y] if x 6= y. If the LR(1) parser is in stateq it will decide to reduce with the production whose

3.4 Bottom-up Syntax Analysis 95

lookahead symbol is the next input symbol. If stateq contains at the same time a completeLR(1)-item
[X → α., x] and anLR(1)-item [Y → β.aγ, y], it still has noshift-reduce-conflict if a 6= x. In state
q the generated parser will reduce if the next next input symbol is x and shift if it isa. Therefore, the
action-table can be computed by the following iteration:

forall (state q) {

forall (terminal x) action [q, x]← error ;

forall ([X → α.β, x] ∈ q)

if (β = ε)

if (X = S′ ∧ α = S ∧ x = #) action [q,#]← accept ;

else action [q, x]← reduce(X → α);

else if (β = aβ′) action [q, a]← shift ;

}

Example 3.4.13We consider some states of the canonicalLR(1)-automaton for the context-free gram-
marG0. The numbering of states is the same as in Fig. 3.15. To make the representation of setsS
of LR(1)-items more readable all lookahead symbols inLR(1)-items fromS with the same kernel
[A→ α.β] are collected in one lookahead set

L = {x | [A→ α.β, x] ∈ q}

We represent subsets{[A→ α.β, x] | x ∈ L} as[A→ α.β, L] and obtain

S′
0 = closure({[S → .E, {#}]})

= { [S → .E, {#}]

[E → .E + T, {#,+}],

[E → .T, {#,+}],

[T → .T ∗ F, {#,+, ∗}],

[T → .F, {#,+, ∗}],

[F → .(E), {#,+, ∗}],

[F → .Id, {#,+, ∗}] }

S′
1 = nextState(S′

0, E)

= { [S → E., {#}],

[E → E.+ T, {#,+}] }

S′
2 = nextState(S′

1, T)

= { [E → T., {#,+}],

[T → T. ∗ F, {#,+, ∗}] }

S′
6 = nextState(S′

1,+)

= { [E → E + .T, {#,+}],

[T → .T ∗ F, {#,+, ∗}],

[T → .F, {#,+, ∗}],

[F → .(E), {#,+, ∗}],

[F → .Id, {#,+, ∗}] }

S′
9 = nextState(S′

6, T))

= { [E → E + T., {#,+}],

[T → T. ∗ F, {#,+, ∗}] }

After the extension by lookahead symbols, the statesS1, S2 andS9, which wereLR(0) inadequate,
have no longer conflicts. In stateS′

1 the next input symbol+ indicates to shift, the next input symbol
indicates to reduce. In stateS′

2 lookahead symbol∗ indicates to shift,# and+ to reduce; similarly
in stateS′

9.
The table 3.6 shows the rows of theaction-table of the canonicalLR(1) parser for the grammarG0,

which belong to the statesS′
0, S

′
1, S

′
2, S

′
6 andS′

9. ⊓⊔

SLR(1)- and LALR(1) parser

The set of states ofLR(1) parsers can become quite large. Therefore, oftenLR analysis methods are
employed that are not as powerful as canonical LR parsers, but have fewer states. Two suchLR analysis

96 3 Syntactic Analysis

Id () ∗ + #

S′

0 s s

S′

1 s acc

S′

2 s r(3) r(3)

S′

6 s s

S′

9 s r(2) r(2)

The used numbering of the productions:

1 : S → E

2 : E → E + T

3 : E → T

4 : T → T ∗ F

5 : T → F

6 : F → (E)

7 : F → Id

Table 3.6. Some rows of theaction-table of the canonicalLR(1) parser forG0. s stands forshift, r(i) for reduce
by productioni, acc for accept. All empty entries representerror.

methods are theSLR(1)- (simpleLR-) andLALR(1)- (lookaheadLR-)methods. IstSLR(1) parser
is a specialLALR(1) parser, and each grammar that has anLALR(1) parser is anLR(1)-grammar.

The starting point of the construction ofSLR(1)- andLALR(1) parsers is the canonicalLR(0)
automatonLR0(G). The setQ of states and thegoto-table for these parsers are the set of states and
thegoto-table of the correspondingLR(0) parser. Lookahead is used to resolve conflicts in the states
in Q. Let q ∈ Q be a state of the canonicalLR(0) automaton and[X → α.β] an item inq. We denote
by λ(q, [X → α.β]) the lookahead set that is added to the item[X → α.β] in q. TheSLR(1)-method
is different from theLALR(1)-method in the definition of the function

λ : Q× IG → 2VT ∪{#}

Relative to such a functionλ, the stateq of LR0(G) has areduce-reduce-conflict, if it has different
complete items[X → α.], [Y → β.] ∈ q with

λ(q, [X → α.]) ∩ λ(q, [Y → β.]) 6= ∅

Relative toλ , q has ashift-reduce-conflict if it has items[X → α.aβ], [Y → γ.] ∈ q with a ∈
λ(q, [Y → γ.]).

If no state of the canonicLR(0) automaton has a conflict, the lookahead setsλ(q, [X → α.]) suffice
to construct anaction-table zu.

In SLR(1) parsers, the lookahead sets for items are independent of thestates in which they occur;
the lookahead only depends on the left side of the productionin the item:

λS(q, [X → α.β]) = {a ∈ VT ∪ {#} | S
′#

∗
=⇒ γXaw} = follow1(X)

for alle statesq mit [X → α.] ∈ q. A stateq of the canonicalLR(0) automaton is calledSLR(1)-
inadequateif it contains conflicts with respect to the functionλS . G is anSLR(1)-grammarif there
are noSLR(1)-inadequate states.

Example 3.4.14We consider again grammarG0 of Example 3.4.1. Its canonicalLR(0) automaton
LR0(G0) has the inadequate statesS1, S2 andS9. We extend the complete items in the states by the
follow1-sets of their left sides to represent the functionλS in a readable way. Sincefollow1(S) = {#}
andfollow1(E) = {#,+,)} we obtain:

S′′
1 = { [S → E., {#}], conflict eliminated,

[E → E.+ T]} da + 6∈ {#}

S′′
2 = { [E → T., {#,+,)}], conflict eliminated,

[T → T. ∗ F] } da ∗ 6∈ {#,+,)}

S′′
9 = { [E → E + T., {#,+,)}], conflict eliminated,

[T → T. ∗ F] } da ∗ 6∈ {#,+,)}

3.4 Bottom-up Syntax Analysis 97

So,G0 i anSLR(1)-grammar and it has anSLR(1) parser. ⊓⊔

The setfollow1(X) collects all symbols that can follow the nonterminalX in a sentential form of the
grammar. Only thefollow1-sets are used to resolve conflicts in the construction of anSLR(1) parser. In
many cases this is not sufficient. More conflicts can be resolved if the state is taken into consideration
in which the complete item[X → α.] occurs. Themost preciselookahead set that considers the state is
defined by:

λL(q, [X → α.β]) = {a ∈ VT ∪ {#} | S
′#

∗
=⇒
rm

γXaw ∧∆∗
G(q0, γα) = q}

Here,q0 is the initial state, and∆G is the transition function of the canonicLR(0) automatonLR0(G).
In λL(q, [X → α.]) only terminal symbols are contained that can followX in a right sentential form
βXaw such thatβα drives the canonicalLR(0) automaton into the stateq. We call stateq of the
canonicalLR(0) automatonLALR(1)-inadequateif it contains conflicts with respect to the function
λL. The grammarG is anLALR(1)-grammar if the canonicalLR(0) automaton has noLALR(1)-
inadequate states.

There always exists anLALR(1) parser to anLALR(1)-grammar. The definition of the function
λL however is not constructive since sets of right sentential forms appear in it that are in general
infinite. The setsλL(q, [A → α.β]) can be characterized as the least solution of the following system
of equations:

λL(q0, [S
′ → .S]) = {#}

λL(q, [A→ αX.β]) =
⋃
{λL(p, [A→ α.Xβ]) | ∆G(p,X) = q} , X ∈ (VT ∪ VN)

λL(q, [A→ .α]) =
⋃
{first1(β)⊙1 λL(q, [X → γ.Aβ]) | [X → γ.Aβ] ∈ q′}

The system of equations describes how sets of successor symbols of items in states originate. The first
equation says that only# can follow the start symbolS′. The second class of equations describes that
the follow symbols of an item[A→ αX.β] in a stateq result from the follow symbols after the dot in
an item[A→ α.Xβ] in statesp from which one can reachq by readingX . The third class of equations
formalizes that the follow symbols of an item[A → .α] in a stateq result from the follow symbols of
occurrencesofA in items inq after the dot, that is, from setsfirst1(β)⊙1 λL(q, [X → γ.Aβ]) for items
[X → γ.Aβ] in q.

The system of equations for the setsλL(q, [A→ α.β]) over the finite subset lattice2VT ∪{#} can be
solved by the iterative method for the computation of least solutions. Considering which nonterminal
may produceε allows us to replace the occurrences of1-concatenation by unions. We so obtain an
equivalent pure union problem that can be solved by the efficient method of Section 3.2.7.

LALR(1) parsers can be constructed in the following, not very efficient way: One constructs a
canonicalLR(1) parser. If its states have no conflicts such statesp andq are merged to a new state
p′ where the cores of the items inp are the same as the cores in the items ofq, that is, where the
difference of the two sets of items consists only in the lookahead sets. The lookahead sets in the new
statep′ are obtained as the union of the lookahead sets of items with the same core. The grammar is an
LALR(1)-grammar if the new states have no conflicts.

A further possibility consists in the modification of Algorithm LR(1)-GEN. The conditional state-
ment

if q′ not in Q then Q := Q ∪ {q′} fi;

is replaced by

if exist.q′′ in Q mit kerngleich(q′, q′′) then verschmelze(Q, q′, q′′) fi;

where

function samecore(p, p′ : set of item):bool;
if set of cores ofp = set of cores ofp′

then return (true)
else return (false)

98 3 Syntactic Analysis

fi;

proc merge(Q : set of set of item,p, p′ : set of item);
Q := Q ∪ {[X → α.β, L1 ∪ L2] | [X → α.β, L1] ∈ p und[X → α.β, L2] ∈ p′}.

Example 3.4.15The following grammar taken from [ASU86] describes a simplified version of the C
assignment statement:

S′ → S

S → L = R | R

L → ∗R | Id

R → L

This grammar is not anSLR(1)-grammar, but t is aLALR(1)-grammar. The states of the canonical
LR(0) automaton are given by:

S0 = { [S′→ .S],

[S → .L = R],

[S → .R],

[L→ . ∗R],

[L→ .Id],

[R→ .L] }

S1 = { [S′→ S.] }

S2 = { [S → L. = R],

[R→ L.] }

S3 = { [S → R.] }

S4 = { [L→ ∗ .R],

[R→ .L],

[L→ . ∗R],

[L→ .Id] }

S5 = { [L→ Id.] }

S6 = { [S → L = .R],

[R→ .L],

[L→ . ∗R],

[L→ .Id] }

S7 = { [L→ ∗R.] }

S8 = { [R→ L.] }

S9 = { [S → L = R.] }

StateS2 is the onlyLR(0)-inadequate state. We havefollow1(R) = {#,=}. This lookahead set for
the item[R→ L.] is not sufficient to resolve theshift-reduce-conflict inS2 since the next input symbol
= is in the lookahead set. Therefore, the grammar is not anSLR(1)-grammar.

The grammar however is aLALR(1)-grammar. The transition diagram of itsLALR(1) parser
is shown in Fig. 3.18. To increase readability, the lookahead setsλL(q, [A → α.β]) were directly
associated with the item[A → α.β] of stateq. In stateS2, the item[R → L.] has now the lookahead
set{#}. The conflict is resolved since this set does not contain the next input symbol=. ⊓⊔

3.4.4 Fehlerbehandlung inLR parsern

LR parser besitzen ebenso wieLL parser die Eigenschaft of the fortsetzungsf"ahigen Pr"afixes. Das
bedeutet, dass jedes durch einenLR parser fehlerfrei analysierte prefix der input zu einem korrekten
inputwort, einem Satz der Sprache, fortgesetzt werden kann. Trifft ein LR parser in einer Konfiguration
auf ein input symbola mit action [q, a] = error , ist dies die fr"uhestm"ogliche Situation, in der ein
Fehler entdeckt werden kann. Diese Konfiguration nennen wirFehlerkonfigurationundq denFehlerzu-
standdieser Konfiguration. Auch forLR parser gibt es ein Spektrum von Fehlerbehandlungsverfahren:

• Vorw"artsfehlerbehandlung. Modifikationen werden in der restlichen input, nicht aber auf dem
Parserkeller vorgenommen.
• R"uckw"artsfehlerbehandlung. Modifikationen werden auchauf dem Parserkeller vorgenommen.

Nehmen wir an,q sei der aktuelle state unda das next Symbol in der input. Als mögliche Korrekturen
bieten sich die Aktionen ein verallgemeinertesshift(βa) für ein item[A → α.βaγ] ausq, ein reduce
für unvollständige items ausq oderskipan:

• The Korrekturshift(βa) nimmt an, dass das Teilwort zuβ ausgefallen ist. Es kellert deshalb die
Zustände, die der item-pushdown automaton bei Lesen der Symbolfolgeβ von q aus durchläuft.
Anschließend wird das Symbola gelesen and der entsprechendeshift-Übergang des Parsers aus-
geführt.

