
Bottom-Up Syntax Analysis

Bottom-Up Syntax Analysis

– Wilhelm/Maurer: Compiler Design, Chapter 8 –

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-sb.de

and
Mooly Sagiv

Tel Aviv University
sagiv@math.tau.ac.il

Bottom-Up Syntax Analysis

Subjects

◮ Functionality and Method

◮ Example Parsers

◮ Derivation of a Parser

◮ Conflicts

◮ LR(k)–Grammars

◮ LR(1)–Parser Generation

◮ Bison

Bottom-Up Syntax Analysis

Bottom-Up Syntax Analysis

Input: A stream of symbols (tokens)

Output: A syntax tree or error

Method: until input consumed or error do
◮ shift next symbol or reduce by some production
◮ decide what to do by looking one symbol ahead

Properties

◮ Constructs the syntax tree in a bottom-up manner
◮ Finds the rightmost derivation (in reversed order)
◮ Reports error as soon as the already read part of the input is

not a prefix of a program (valid prefix property)

Bottom-Up Syntax Analysis

Parsing aabb in the grammar Gab with S → aSb|ǫ

Stack Input Action Dead ends

$ aabb# shift reduce S → ǫ

$a abb# shift reduce S → ǫ

$aa bb# reduce S → ǫ shift
$aaS bb# shift reduce S → ǫ

$aaSb b# reduce S → aSb shift, reduce S → ǫ

$aS b# shift reduce S → ǫ

$aSb # reduce S → aSb reduce S → ǫ

$S # accept reduce S → ǫ

Issues:

◮ Shift vs. Reduce

◮ Reduce A → β, Reduce B → αβ

Bottom-Up Syntax Analysis

Parsing aa in the grammar S → AB , S → A, A → a, B → a

Stack Input Action Dead ends

$ aa# shift
$a a# reduce A → a reduce B → a, shift
$A a# shift reduce S → A
$Aa # reduce B → a reduce A → a
$AB # reduce S → AB
$S # accept

Issues:

◮ Shift vs. Reduce

◮ Reduce A → β, Reduce B → αβ

Bottom-Up Syntax Analysis

Shift-Reduce Parsers

◮ The bottom–up Parser is a shift–reduce parser, each step is

a shift: consuming the next input symbol or
a reduction: reducing a suffix of the stack contents by some

production.

◮ the problem is to decide when to stop shifting and make a
reduction instead.

◮ a next right side to reduce is called a “handle”,

reducing too early: dead end,
reducing too late: burying the handle.

Bottom-Up Syntax Analysis

LR-Parsers – Deterministic Shift–Reduce Parsers

Parser decides whether to shift or to reduce based on

◮ the contents of the stack and

◮ k symbols lookahead into the rest of the input

Property of the LR–Parser: it suffices to consider the topmost state
on the stack instead of the whole stack contents.

Bottom-Up Syntax Analysis

From PG to LR–Parsers for G

◮ PG has non-deterministic choice of expansions,

◮ LL–parsers eliminate non–determinism by looking ahead at
expansions,

◮ LR–parsers follow all possibilities in parallel (corresponds to
the subset–construction in NFA → DFA).

Derivation

1. Characteristic finite automaton of PG , a description of PG

2. Make deterministic

3. Interpret as control of a push down automaton

4. Check for “inedaquate” states

Bottom-Up Syntax Analysis

From PG to LR–Parsers for G

◮ PG has non-deterministic choice of expansions,

◮ LL–parsers eliminate non–determinism by looking ahead at
expansions,

◮ LR–parsers follow all possibilities in parallel (corresponds to
the subset–construction in NFA → DFA).

Derivation

1. Characteristic finite automaton of PG , a description of PG

2. Make deterministic

3. Interpret as control of a push down automaton

4. Check for “inedaquate” states

Bottom-Up Syntax Analysis

Characteristic Finite Automaton of PG

NFA char(PG) = (Qc ,Vc ,∆c , qc ,Fc) — the characteristic finite
automaton of PG :

◮ Qc = ItG — states: the items of G

◮ Vc = VT ∪ VN — input alphabet: the sets of term. and
non-term. symbols

◮ qc = [S ′ → .S] — start state

◮ Fc = {[X → α.] | X →α ∈ P} — final states: the complete
items

◮ ∆c =
{([X→α.Y β],Y , [X→αY .β])|X→αY β ∈ P and
Y ∈ VN ∪ VT}∪
{([X →α.Y β], ε, [Y →.γ]) |X →αY β ∈ P and Y →γ ∈ P}

Bottom-Up Syntax Analysis

Item PDA for Gab: S → aSb|ǫ

PGab

Stack Input New Stack

[S ′ → .S] ǫ [S ′ → .S][S → .aSb]
[S ′ → .S] ǫ [S ′ → .S][S → .]
[S → .aSb] a [S → a.Sb]
[S → a.Sb] ǫ [S → a.Sb][S → .aSb]
[S → a.Sb] ǫ [S → a.Sb][S → .]
[S → aS .b] b [S → aSb.]
[S → a.Sb][S → .] ǫ [S → aS .b]
[S → a.Sb][S → aSb.] ǫ [S → aS .b]
[S ′ → .S][S → aSb.] ǫ [S ′ → S .]
[S ′ → .S][S → .] ǫ [S ′ → S .]

Bottom-Up Syntax Analysis

The Characteristic NFA

char(PGab
)

[S → a.Sb][S → .aSb]

[S’ → . S]
S

a S
ǫ

ǫ

[S’ → S.]

ǫ

ǫ [S → aSb.]

[S → .]

[S → aS.b]
b

Bottom-Up Syntax Analysis

Characteristic NFA for G0

S → E
E → E + T | T
T → T ∗ F | F
F → (E) | id

ε

ε

ε

ε

)

id

(

F

ε

T

ε ε
ε

ε
ε

ε
T

[E → E + T .]

[T → T ∗ F .]
F

[S → E .]
E

[S → .E]

[E → .E + T]
E

[E → E . + T]
+

T

[E → T .][E → .T]

ε

ε

[T → .F]

ε

ε

[F → .(E)]

[F → .id] [F → id.]

[F → (.E)]
E

[F → (E .)] [F → (E).]

[T → T ∗ .F][T → T . ∗ F]
∗

[E → E + .T]

ε

[T → .T ∗ F]

[T → F .]

Bottom-Up Syntax Analysis

Interpreting char(PG)

State of char(PG) is the current state of PG , i.e. the state on top
of PG ’s stack. Adding actions to the transitions and states of
char(PG) to describe PG :

ε–transitions: push new state of char(PG) onto stack of PG : new
current state.

reading transitions: reading transitions of PG : replace current state
of PG by the shifted one.

final state: Actions in PG :

◮ pop final state [X → α.] from the stack,
◮ do a transition from the new topmost state

under X ,
◮ push the new state onto the stack.

Bottom-Up Syntax Analysis

The Handle Revisited

◮ The bottom up–Parser is a shift–reduce–parser, each step is

a shift: consuming the next input symbol,
making a transition under it from the current state,
pushing the new state onto the stack.

a reduction: reducing a suffix of the stack contents by some production,
making a transition under the left side non–terminal from the
new current state,
pushing the new state.

◮ the problem is the localization of the “handle”, the next right
side to reduce.

reducing too early: dead end,
reducing too late: burying the handle.

Bottom-Up Syntax Analysis

Handles and Viable Prefixes

Some Abbreviations:
RMD – rightmost derivation
RSF – right sentential form
S ′ ∗

=⇒
rm

βXu =⇒
rm

βαu – a RMD of cfg G .

◮ α is a handle of βαu.
The part of a RSF next to be reduced.

◮ Each prefix of βα is a viable prefix.
A prefix of a RSF stretching at most up to the end of the
handle,
i.e. reductions if possible then only at the end.

Bottom-Up Syntax Analysis

Examples in G0

RSF handle viable prefix Reason
E + F F E , E+, E + F S =⇒

rm
E =⇒

rm
E + T =⇒

rm
E + F

T ∗ id id T , T∗, T ∗ id S
3

=⇒
rm

T ∗ F =⇒
rm

T ∗ id

F ∗ id F F S
4

=⇒
rm

T ∗ id =⇒
rm

F ∗ id

Bottom-Up Syntax Analysis

Valid Items

[X → α.β] is valid for the viable prefix γα, if there exists a

RMD S ′ ∗
=⇒
rm

γXw =⇒
rm

γαβw .

An item valid for a viable prefix gives one interpretation of the
parsing situation.
Some viable prefixes of G0

Viable
Prefix

Valid Items Reason γ w X α β

E+ [E → E + .T] S =⇒
rm

E =⇒
rm

E + T ε ε E E+ T

[T → .F] S ∗
=⇒
rm

E + T =⇒
rm

E + F E+ ε T ε F

[F → .id] S ∗
=⇒
rm

E + F =⇒
rm

E + id E+ ε F ε id

(E + ([F → (.E)] S ∗
=⇒
rm

(E + F) (E+) F (E)

=⇒
rm

(E + (E))

Bottom-Up Syntax Analysis

Valid Items and Parsing Situations

Given some input string xuvw .
The RMD
S ′ ∗

=⇒
rm

γXw =⇒
rm

γαβw
∗

=⇒
rm

γαvw
∗

=⇒
rm

γuvw
∗

=⇒
rm

xuvw

describes the following sequence of partial derivations:
γ

∗
=⇒
rm

x α
∗

=⇒
rm

u β
∗

=⇒
rm

v X =⇒
rm

αβ

S ′ ∗
=⇒
rm

γXw

executed by the bottom-up parser in this order.
The valid item [X → α . β] for the viable prefix γα describes the
situation after partial derivation 2.

Bottom-Up Syntax Analysis

Theorems

char(PG) = (Qc ,Vc ,∆c , qc ,Fc)

Theorem

For each viable prefix there is at least one valid item.

Every parsing situation is described by at least one valid item.

Theorem

Let γ ∈ (VT ∪ VN)∗ and q ∈ Qc .
(qc , γ) ⊢

∗

char(PG)
(q, ε) iff γ is a viable prefix and q is a valid item for

γ.

A viable prefix brings char(PG) from its initial state to all its valid
items.

Theorem

The language of viable prefixes of a cfg is regular.

Bottom-Up Syntax Analysis

Making char(PG) deterministic

Apply NFA → DFA to char(PG): Result LR-DFA(G).
Example: char(PGab

)

[S → a.Sb][S → .aSb]

[S’ → . S]
S

a S
ǫ

ǫ

[S’ → S.]

ǫ

ǫ [S → aSb.]

[S → .]

[S → aS.b]
b

LR-DFA(Gab):

Bottom-Up Syntax Analysis

Characteristic NFA for G0

S → E
E → E + T | T
T → T ∗ F | F
F → (E) | id

ε

ε

ε

ε

)

id

(

F

ε

T

ε ε
ε

ε
ε

ε
T

[E → E + T .]

[T → T ∗ F .]
F

[S → E .]
E

[S → .E]

[E → .E + T]
E

[E → E . + T]
+

T

[E → T .][E → .T]

ε

ε

[T → .F]

ε

ε

[F → .(E)]

[F → .id] [F → id.]

[F → (.E)]
E

[F → (E .)] [F → (E).]

[T → T ∗ .F][T → T . ∗ F]
∗

[E → E + .T]

ε

[T → .T ∗ F]

[T → F .]

Bottom-Up Syntax Analysis

LR-DFA(G0)

S10S7S2

S4 S11S8

S9S6

S3

S5

S1

S0

T
T

(

(

F

id

id

F

id

)

(

∗ F

∗

+ T

E

E

F

+

(
id

Bottom-Up Syntax Analysis

The States of LR-DFA(G0) as Sets of Items
S0 = { [S → .E], S5 = { [F → id.]}

[E → .E + T],
[E → .T], S6 = { [E → E + .T],
[T → .T ∗ F], [T → .T ∗ F],
[T → .F], [T → .F],
[F → .(E)], [F → .(E)],
[F → .id]} [F → .id]}

S1 = { [S → E .], S7 = { [T → T ∗ .F],
[E → E . + T]} [F → .(E)],

[F → .id]}
S2 = { [E → T .], S8 = { [F → (E .)],

[T → T . ∗ F]} [E → E . + T]}

S3 = { [T → F .]} S9 = { [E → E + T .],
[T → T . ∗ F]}

S4 = { [F → (.E)], S10 = { [T → T ∗ F .]}
[E → .E + T],
[E → .T], S11 = { [F → (E).]}
[T → .T ∗ F]
[T → .F]
[F → .(E)]
[F → .id]}

Bottom-Up Syntax Analysis

Theorems
char(PG) = (Qc , Vc , ∆c , qc , Fc) and
LR − DFA(G) = (Qd , VN ∪ VT , ∆, qd , Fd)

Theorem

Let γ be a viable prefix and p(γ) ∈ Qd be the uniquely determined state,
into which LR-DFA(G) transfers out of the initial state by reading γ, i.e.,
(qd , γ) ⊢

∗

LR−DFA(G)
(p(γ), ε). Then

(a) p(ε) = qd

(b) p(γ) = {q ∈ Qc | (qc , γ) ⊢
∗

char(PG)
(q, ε)}

(c) p(γ) = {i ∈ ItG | i valid for γ}

(d) Let Γ the (in general infinite) set of all viable prefixes of G. The
mapping p : Γ → Qd defines a finite partition on Γ.

(e) L(LR-DFA(G)) is the set of viable prefixes of G, which end in a
handle.

Bottom-Up Syntax Analysis

G0

γ = E + F is a viable prefix of G0.
With the state p(γ) = S3 are also associated:
F , (F , ((F , (((F , . . .

T ∗ (F , T ∗ ((F , T ∗ (((F , . . .

E + F , E + (F , E + ((F , . . .

Regard S6 in LR-DFA(G0).
It consists of all valid items for the viable prefix E+,

i.e., the items
[E → E + .T], [T → .T ∗ F], [T → .F], [F → .id], [F → .(E)].

Reason:
E+ is prefix of the RSF E + T ;
S =⇒

rm
E =⇒

rm
E + T =⇒

rm
E + F =⇒

rm
E + id

↑ ↑ ↑
Therefore [E →E + .T] [T → .F] [F → .id]

are valid.

Bottom-Up Syntax Analysis

What the LR-DFA(G) describes

LR-DFA(G) interpreted as a PDA P0(G) = (Γ,VT ,∆, q0, {qf })

Γ, (stack alphabet): the set Qd of states of LR-DFA(G).

q0 = qd (initial state): in the stack of P0(G) initially.

qf = {[S ′ → S .]} the final state of LR-DFA(G),

∆ ⊆ Γ∗ × (VT ∪ {ε}) × Γ∗ (transition relation):
Defined as follows:

Bottom-Up Syntax Analysis

LR-DFA(G)’s Transition Relation

shift: (q, a, q δd(q, a)) ∈ ∆, if δd(q, a) defined.
Read next input symbol a and push successor state of
q under a (item [X → · · · .a · · ·] ∈ q).

reduce: (q q1 . . . qn, ε, q δd (q,X)) ∈ ∆,
if [X → α.] ∈ qn, |α| = n.
Remove |α| entries from the stack.
Push the successor of the new topmost state under X
onto the stack.

Note the difference in the stacking behavior:

◮ the Item PDA PG keeps on the stack only one item for each
production under analysis,

◮ the PDA described by the LR-DFA(G) keeps |α| states on the
stack for a production X → αβ represented with item
[X → α.β]

Bottom-Up Syntax Analysis

Reduction in PDA P0(G)

X

α

[X → α.]

· · ·

· · ·

[· · · → · · ·X . · · ·]

· · ·

[X → .α]

[· · · → · · · .X · · ·]

Bottom-Up Syntax Analysis

Some observations and recollections

◮ also works for reductions of ǫ,

◮ each state has a unique entry symbol,

◮ the stack contents uniquely determine a viable prefix,

◮ current state (topmost) is the state associated with this viable
prefix,

◮ current state consists of all items valid for this viable prefix.

Bottom-Up Syntax Analysis

Non-determinism in P0(G)

P0(G) is non-deterministic if either

Shift–reduce conflict: There are shift as well as reduce transitions
out of one state, or

Reduce–reduce conflict: There are more than one reduce
transitions from one state.

States with a shift–reduce conflict have at least one read item
[X → α .a β] and at least one complete item
[Y → γ.].

States with a reduce–reduce conflict have at least two complete
items [Y → α.], [Z → β.].

A state with a conflict is inadequate.

Bottom-Up Syntax Analysis

Some Inadequate States

S10S7S2

S4 S11S8

S9S6

S3

S5

S1

S0

T
T

(

(

F

id

id

F

id

)

(

∗ F

∗

+ T

E

E

F

+
(

id

LR-DFA(G0) has three inadequate states, S1, S2 and S9.

S1: Can reduce E to S (complete item [S → E .]) or read ”+”
(shift–item [E → E . + T]);

S2: Can reduce T to E (complete item [E → T .]) or read ”∗”
(shift-item [T → T . ∗ F]);

S9: Can reduce E + T to E (complete item [E → E + T .]) or read ”∗”
(shift–item [T → T . ∗ F]).

Bottom-Up Syntax Analysis

Direct Construction of the LR-DFA(G)

Algorithm LR-DFA:
Input: cfg G = (V ′

N ,VT ,P ′,S ′)
Output: LR-DFA(G) = (Qd ,VN ∪ VT , qd , δd ,Fd)
Method: The states and the transitions of the LR-DFA(G)

are constructed using the following three functions
Start, Closure and Succ
Fd – set of states with at least one complete item

var q, q′: set of item;
Qq: set of set of item;
δd : set of item ×(VN ∪ VT) → set of item;

Bottom-Up Syntax Analysis

function Start: set of item; return({[S ′ → .S]});
function Closure(s : set of item) : set of item;

(∗ ε-Succ states of algorithm NFA → DFA ∗)
begin q := s;

while exists [X → α.Y β] in q and Y → γ in P
and [Y → .γ] not in q do

add [Y → .γ] to q
od;
return(q)

end ;
function Succ(s : set of item,Y : VN ∪ VT) : set of item;

return({[X → αY .β] | [X → α.Y β] ∈ s});

Bottom-Up Syntax Analysis

begin
Qd := {Closure(Start)}; (∗ start state ∗)
δd := ∅;
foreach q in Qd and X in VN ∪ VT do

let q′ = Closure(Succ(q,X)) in
if q′ 6= ∅ (* X–successor exists *)
then

if q′ not in Qd (* new state created *)
then Qd := Qd ∪ {q′}
fi;

δd := δd ∪ {q
X
−→ q′} (* new transition *)

fi
tel

od
end

Bottom-Up Syntax Analysis

LR(k)–Grammars

G – LR(k)–Grammar iff in each RMD
S ′ = α0 =⇒

rm
α1 =⇒

rm
α2 · · · =⇒

rm
αm = v

and in each RSF αi = γβw

◮ the handle can be localized, and

◮ the production to be applied can be determined

by regarding the prefix γβ of αi and at most k symbols after the
handle, β.
I.e., the splitting of αi into γβw and the production X → β, such
that αi−1 = γXw , is uniquely determined by γβ and k : w .

Bottom-Up Syntax Analysis

LR(k)–Grammars

Definition: A cfg G is an LR(k)-Grammar, iff

S ′ ∗
=⇒
rm

αXw =⇒
rm

αβw and

S ′ ∗
=⇒
rm

γYx =⇒
rm

αβy and

k : w = k : y implies
that α = γ and X = Y and x = y .

Bottom-Up Syntax Analysis

Example 1

Cfg GnLL with the productions
S → A | B
A → aAb | 0
B → aBbb | 1

◮ L(G) = {an0bn | n ≥ 0} ∪ {an1b2n | n ≥ 0}.

◮ GnLL is not LL(k) for arbitrary k , but GnLL is LR(0)-grammar.

◮ The RSFs of GnLL (handle)
◮ S , A, B,
◮ anaBbbb2n, anaAbbn,
◮ ana0bbn, ana1bbb2n.

Bottom-Up Syntax Analysis

Example 1 (cont’d)

◮ Only anaAbbn and anaBbbb2n allow 2 different reductions.

◮ reduce

γ
︷︸︸︷

an

β
︷︸︸︷

aAb bn to anAbn: part of a RMD
S

∗

=⇒
rm

anAbn =⇒
rm

anaAbbn,

◮ reduce anaAbbn to anaSbbn: not part of any RMD.

◮ The prefix an of anAbn uniquely determines, whether
◮ A is the handle (n = 0), or
◮ whether aAb is the handle (n > 0).

◮ The RSFs anBb2n are treated analogously.

Bottom-Up Syntax Analysis

Example 2

Cfg G1 with
S → aAc
A → Abb | b

◮ L(G1) = {ab2n+1c | n ≥ 0}

◮ G1 is LR(0)–grammar.

RSF

γ
︷︸︸︷
a

β
︷︸︸︷

Abb b2nc : only legal reduction is to aAb2nc ,
uniquely determined by the prefix aAbb.

RSF

γ
︷︸︸︷
a

β
︷︸︸︷

b b2nc : b is the handle,
uniquely determined by the prefix ab.

Bottom-Up Syntax Analysis

Example 3

Cfg G2 with
S → aAc
A → bbA | b.

◮ L(G2) = L(G1)

◮ G2 is LR(1)–grammar.

◮ Critical RSF abnw .
◮ 1 : w = b implies, handle in w ;
◮ 1 : w = c implies, last b in bn is handle.

Bottom-Up Syntax Analysis

Example 4

Cfg G3 with S → aAc A → bAb | b.

◮ L(G3) = L(G1),

◮ G3 is not LR(k)–grammar for arbitrary k .

Choose an arbitrary k .
Regard two RMDs

S
∗

=⇒
rm

abnAbnc =⇒
rm

abnbbnc

S
∗

=⇒
rm

abn+1Abn+1c =⇒
rm

abn+1bbn+1c where n ≥ k

Choose α = abn, β = b, γ = abn+1,w = bnc , y = bn+2c .

It holds k : w = k : y = bk .
α 6= γ implies that G3 is not an LR(k)–grammar.

Bottom-Up Syntax Analysis

Adding Lookahead

Lookahead will be used to resolve conflicts.

◮ [X → α1.α2, L] – LR(k)–item,
if X → α1α2 ∈ P and L ⊆ V≤k

T#.

◮ [X → α1.α2] – core of [X → α1.α2, L],

◮ L – the lookahead set of [X → α1.α2, L].

◮ [X → α1.α2, L] is valid for a viable prefix αα1, if for all u ∈ L

there is a RMD S ′#
∗

=⇒
rm

αXw =⇒
rm

αα1α2w with u = k : w .

The context–free items can be regarded as LR(0)-items if
[X → α1.α2, {ε}] is identified with [X → α1.α2].

Bottom-Up Syntax Analysis

Example from G0

(1) [E → E + .T , {),+,#}] is a valid LR(1)–item for (E+
(2) [E → T ., {∗}] is not a valid LR(1)-item for

any viable prefix
Reason:
(1) S ′ ∗

=⇒
rm

(E) =⇒
rm

(E + T)
∗

=⇒
rm

(E + T + id) where

α = (, α1 = E+, α2 = T , u = +, w = +id)

(2) The string E∗ can occur in no RMD.

Bottom-Up Syntax Analysis

LR–Parser

Take their decisions (to shift or to reduce) by consulting

◮ the viable prefix γ in the stack, actually the by γ uniquely
determined state (on top of the stack),

◮ the next k symbols of the remaining input.

◮ Recorded in an action–table.

◮ The entries in this table are:
shift: read next input symbol;
reduce (X → α): reduce by production X → α;
error: report error
accept: report successful termination.

A goto–table records the transition function of the LR–DFA(G).

Bottom-Up Syntax Analysis

The action– and the goto–table

action-table goto-table

V
≤k

T# VN ∪ VT

Q

u

q
parser–action

for (q, u)

Q

X

q δd (q,X)

Bottom-Up Syntax Analysis

Parser Table for S → aSb|ǫ

Action–table Goto–table

state sets of items symbols

a b #

0

8

<

:

[S ′ → .S],
[S → .aSb],
[S → .]}

9

=

;

s r(S → ǫ)

1

8

<

:

[S → a.Sb],
[S → .aSb],
[S → .]}

9

=

;

s r(S → ǫ)

2 {[S → aS.b]} s

3 {[S → aSb.]} r(S → aSb) r(S → aSb)
4 {[S ′ → S.]} accept

state symbol

a b # S

0 1 4
1 1 2
2 3
3
4

Bottom-Up Syntax Analysis

Parsing aabb

Stack Input Action

$ 0 aabb# shift 1
$ 0 1 abb# shift 1
$ 0 1 1 bb# reduce S → ǫ

$ 0 1 1 2 bb# shift 3
$ 0 1 1 2 3 b# reduce S → aSb
$ 0 1 2 b# shift 3
$ 0 1 2 3 # reduce S → aSb
$ 0 4 # accept

Bottom-Up Syntax Analysis

Compressed Representation

◮ Integrate the terminal columns of the goto–table into the
action–table.

◮ Combine shift entry for q and a with δd(q, a).

◮ Interpret action[q, a] = shift p as read a and push p.

Bottom-Up Syntax Analysis

Compressed Parser table for S → aSb|ǫ

st. sets of items symbols goto

a b # S

0







[S ′ → .S],
[S → .aSb],
[S → .]}






s1 rS → ǫ 4

1







[S → a.Sb],
[S → .aSb],
[S → .]}






s1 rS → ǫ 2

2 {[S → aS .b]} s3
3 {[S → aSb.]} rS → aSb rS → aSb
4 {[S ′ → S .]} accept

Bottom-Up Syntax Analysis

Compressed Parser table for
S → AB , S → A, A → a, B → a

s sets of items symbols goto

a # A B S

0







[S ′ → .S],
[S → .AB],
[S → .A],
[A → .a]







s1 2 5

1 {[A → a.]} rA → a rA → a

2







[S → A.B],
[S → A.],
[B → .a]






s3 rS → A 4

3 {[B → a.]} rB → a
4 {[S → AB.]} rS → AB
5 {[S ′ → S .]} a

Bottom-Up Syntax Analysis

Parsing aa

Stack Input Action

$ 0 aa# shift 1
$ 0 1 a# reduce A → a
$ 0 2 a# shift 3
$ 0 2 3 # reduce B → a
$ 0 2 4 # reduce S → AB
$ 0 5 # accept

Bottom-Up Syntax Analysis

Algorithm LR(1)–PARSER

type state = set of item;
var lookahead: symbol;

(∗ the next not yet consumed input symbol ∗)
S : stack of state;

proc scan;
(∗ reads the next symbol into lookahead ∗)

proc acc;
(∗ report successful parse; halt ∗)

proc err (message: string);
(∗ report error; halt ∗)

Bottom-Up Syntax Analysis

scan; push(S , qd);
forever do

case action[top(S), lookahead] of
shift: begin push(S , goto[top(S), lookahead]);

scan
end ;

reduce (X→α) : begin

pop|α|(S); push(S , goto[top(S), X]);
output(”X → α”)

end ;
accept: acc;
error: err("...");

end case
od

Bottom-Up Syntax Analysis

Construction of LR(1)–Parsers

Classes of LR–Parsers:

canonical LR(1): analyze languages of LR(1)–grammars,

SLR(1): use FOLLOW1 to resolve conflicts,
size is size of LR(0)–parser,

LALR(1): refine lookahead sets compared to FOLLOW1,
size is size of LR(0)–parser.
BISON is an LALR(1)–parser generator.

Bottom-Up Syntax Analysis

LR(1)–Conflicts

Set of LR(1)-items I has a

shift-reduce-conflict:
if exists at least one item [X → α.aβ,L1] ∈ I
and at least one item [Y → γ.,L2] ∈ I ,
and if a ∈ L2.

reduce-reduce-conflict:
if it contains at least two items [X → α.,L1]
and [Y → β.,L2] where L1 ∩ L2 6= ∅.

A state with a conflict is called inadequate.

Bottom-Up Syntax Analysis

Construction of an LR(1)–Action Table
Input: set of LR(1)–states Q without inadequate states
Output: action-table
Method:

foreach q ∈ Q do

foreach LR(1)–item [K ,L] ∈ q do

if K = [S ′ → S.] and L = {#}
then action[q,#] := accept

elseif K = [X → α.]
then foreach a ∈ L do

action[q, a] := reduce(X → α)
od

elseif K = [X → α.aβ]
then action[q, a] := shift

fi

od

od;

foreach q ∈ Q and a ∈ VT such that action[q, a] is undef. do

action[q, a] := error

od;

Bottom-Up Syntax Analysis

Computing Canonical LR(1)–States

Input: cfg G
Output: char. NFA of a canonical LR(1)–Parser for G .
Method: The states and transitions are constructed

using the functions Start, Closure and Succ.

var q, q′ : set of item;
var Q : set of set of item;
var δ : set of item× (VN ∪ VT) → set of item;
function Start: set of item;

return({[S ′ → .S , {#}]});

Bottom-Up Syntax Analysis

Computing Canonical LR(1)–States

function Closure(q : set of item) : set of item;
begin

foreach [X → α.Y β,L] in q and Y → γ in P do
if exist. [Y → .γ,L′] in q
then replace [Y → .γ,L′] by [Y → .γ,L′ ∪ ε-ffi(βL)]
else q := q ∪ {[Y → .γ, ε-ffi(βL)]}
fi

od;
return(q)

end ;
function Succ(q : set of item, Y : VN ∪ VT) : set of item;

return({[X → αY .β,L] | [X → α.Y β,L] ∈ q});

Bottom-Up Syntax Analysis

Computing Canonical LR(1)–States

begin
Q := {Closure(Start)}; δ := ∅;
foreach q in Q and X in VN ∪ VT do

let q′ = Closure(Succ(q,X)) in
if q′ 6= ∅ (* X–successor exists *)
then

if q′ not in Q (* new state *)
then Q := Q ∪ {q′}
fi;

δ := δ ∪ {q
X
−→ q′} (* new transition *)

fi
tel

od
end

Bottom-Up Syntax Analysis

Computing Canonical LR(1)–States

◮ The test “q′ not in Q” uses an equality test on LR(1)–items.
[K1, L1] = [K2, L2] iff K1 = K2 and L1 = L2.

◮ The canonical LR(1)–parser generator splits LR(0)–states.

◮ LALR(1)–parsers could be generated by
◮ using the equality’ test [K1, L1] = [K2, L2] iff K1 = K2.
◮ and replacing an existing state q′′ by a state, in which equal’

items [K1, L1] ∈ q′ and [K2, L2] ∈ q′′ are merged to new items
[K1, L1 ∪ L2].

Bottom-Up Syntax Analysis

Example from G0
S ′

0= Closure(Start)
= {[S → .E , {#}]

[E → .E + T , {#, +}],
[E → .T , {#,+}],
[T → .T ∗ F , {#,+, ∗}],
[T → .F , {#,+, ∗}],
[F → .(E), {#,+, ∗}],
[F → .id, {#,+, ∗}] }

S ′
1= Closure(Succ(S ′

0, E))
= {[S → E ., {#}],

[E → E . + T , {#, +}] }

S ′
2= Closure(Succ(S ′

0, T))
= {[E → T ., {#,+}],

[T → T . ∗ F , {#,+, ∗}] }

S ′
6= Closure(Succ(S ′

1,+))
= {[E → E + .T , {#, +}],

[T → .T ∗ F , {#,+, ∗}],
[T → .F , {#,+, ∗}],
[F → .(E), {#,+, ∗}],
[F → .id, {#,+, ∗}] }

S ′
9= Closure(Succ(S ′

6,T))
= {[E → E + T ., {#, +}],

[T → T . ∗ F , {#,+, ∗}] }

Inadequate LR(0)–states S1,S2 und S9 are adequate after adding lookahead sets.

S ′
1 shifts under ”+”, reduces under ”#”.

S ′
2 shifts under ”∗”, reduces under ”#” and ”+”,

S ′
9 shifts under ”∗”, reduces under ”#” and ”+”.

Bottom-Up Syntax Analysis

Non–canonical LR–Parsers

SLR(1)– and LALR(1)–Parsers are constructed by

1. building an LR(0)–parser,

2. testing for inadequate LR(0)–states,

3. extending complete items by lookahead sets,

4. testing for inadequate LR(1)–states.

The lookahead set for item [X → α.β] in q is denoted
LA(q, [X → α.β])
The function LA : Qd × ItG → 2VT∪{#} is differently defined for
SLR(1) (LAS) und LALR(1) (LAL).
SLR(1)– and LALR(1)–Parsers have the size of the LR(0)–parser,
i.e., no states are split.

Bottom-Up Syntax Analysis

Constructing SLR(1)–Parsers

◮ Add LAS(q, [X → α.]) = FOLLOW1(X) to all complete items;

◮ Check for inadequate SLR(1)–states.

◮ Cfg G is SLR(1) if it has no inadequate SLR(1)–states.

Example from G0:
Extend the complete items in the inadequate states S1,S2 and S9

by FOLLOW1 as their lookahead sets.
S ′′

1
= { [S → E ., {#}], conflict removed,

[E → E . + T]} ” + ” is not in {#}

S ′′

2
= { [E → T ., {#, +,)}], conflict removed,

[T → T . ∗ F] } ” ∗ ” is not in {#, +,)}

S ′′

9
= { [E → E + T ., {#, +,)}], conflict removed,

[T → T . ∗ F] } ” ∗ ” is not in {#, +,)}
G0 is an SLR(1)–grammar.

Bottom-Up Syntax Analysis

A Non–SLR(1)–Grammar

S ′ → S
S → L = R | R
L → ∗R | id
R → L

Slightly abstracted form of the C–assignment.

Bottom-Up Syntax Analysis

States of the LR–DFA as sets of items
S0 = { [S ′ → .S],

[S → .L = R],
[S → .R],
[L → . ∗ R],
[L → .id],
[R → .L] }

S1 = { [S ′ → S.] }

S2 = { [S → L. = R],
[R → L.] }

S3 = { [S → R.] }

S4 = { [L → ∗ .R],
[R → .L],
[L → . ∗ R],
[L → .id] }

S5 = { [L → id.] }

S6 = { [S → L = .R],
[R → .L],
[L → . ∗ R],
[L → .id] }

S7 = { [L → ∗ R.] }

S8 = { [R → L.] }

S9 = { [S → L = R.] }

S2 is the only inadequate LR(0)–state.

Extend [R → L.] ∈ S2 by FOLLOW1(R) = {#, =} does not remove the

shift-reduce-conflict, since the symbol to shift, ”=”, is in the lookahead set.

Bottom-Up Syntax Analysis

LALR(1)–Parsers

SLR(1): LAS(q, [X → α.]) =

{a ∈ VT ∪ {#} | S ′#
∗

=⇒ βXaγ} = FOLLOW1(X)

LALR(1): LAL(q, [X → α.]) =

{a ∈ VT∪{#} | S ′#
∗

=⇒
rm

βXaw and δ∗d(qd , βα) = q}

Lookahead set LAL(q, [X → α.]) depends on the
state q.

◮ Add LAL(q, [X → α.]) to all complete items;

◮ Check for inadequate LALR(1)–states.

◮ Cfg G is LALR(1) if it has no inadequate LALR(1)–states.

◮ Definition is not constructive.

◮ Construction by modifying the LR(1)–Parser Generator,
merging items with identical cores.

Bottom-Up Syntax Analysis

The Size of LR(1) Parsers

The number of states of canonical and non-canonical LR(1) parsers
for Java and C:

C Java

LALR(1) 400 600
LR(1) 10000 12000

Bottom-Up Syntax Analysis

Non–SLR–Example

[L → ∗R ., {=, #}]

∗

R

id

RL

L

=
id ∗

L
id

∗

R

S

[L → id., {=, #}]

S8

S9

S7

S4

S5

S6

S3

S2

S1S0

[R → L., {#}]
[S → L. = R]

[S → L = R ., {#}]

L → .id]
[L → . ∗ R]
[R → .L]
[S → L = .R]

[R → .L]
[L → .id]
[L → . ∗ R]
[S → .R]

[S ′ → .S]
[S → .L = R]

[S ′ → S ., {#}]

[S → R ., {#}]

[L → ∗.R]
[R → .L]

[L → .id]
[L → . ∗ R]

[R → L., {#, =}]

Grammar is LALR(1)–grammar.

Bottom-Up Syntax Analysis

Interesting Non LR(1) Grammars

◮ Common “derived” prefix
A → B1ab

A → B2ac

B1 → ǫ

B2 → ǫ

◮ Optional non-terminals

St → OptLab St ′

OptLab → id :

OPtlab → ǫ

St ′ → id := Exp

◮ Ambiguous:

◮ Ambiguous arithmetic expressions
◮ Dangling-else

Bottom-Up Syntax Analysis

Bison Specification

Definitions: start-non-terminal+tokens+associativity
%%
Productions
%%
C-Routines

Bottom-Up Syntax Analysis

Bison Example
%{

int line_number = 1 ; int error_occ = 0 ;

void yyerror(char *);

#include <stdio.h>

%}

%start exp

%left ’+’

%left ’*’

%right UMINUS

%token INTCONST

%%

exp: exp ’+’ exp { $$ = $1 + $3 ;}

| exp ’*’ exp { $$ = $1 * $3 ;}

| ’-’ exp %prec UMINUS { $$ = - $2 ; }

| ’(’ exp ’)’ { $$ = $2 ; }

| INTCONST

;

%%

void yyerror(char *message)

{ fprintf(stderr, "%s near line %ld. \n", message, line_number);

error_occ=1; }

Bottom-Up Syntax Analysis

Flex for the Example

%{

#include <math.h>

#include "calc.tab.h"

extern int line_number;

%}

Digit [0-9]

%%

{Digit}+ {yylval = atoi(yytext) ;

return(INTCONST); }

\n {line_number++ ; }

[\t]+ ;

. {return(*yytext); }

%%

