Software Pipelining

Software Pipelining

Reinhard Wilhelm
Universitat des Saarlandes
wilhelm@cs.uni-sb.de

— Wilhelm /Maurer: Compiler Design, Chapter 12 —

5. Februar 2008

nae

Software Pipelining
L Introduction

Scheduling Cyclic Code

So far only scheduling of acyclic code:
» List scheduling of basic blocks

» Trace and superblock scheduling of sequences of basic blocks
What about loops? First approach:

1. Unroll loop a number of times, obtaining an enlarged basic
block as new body,

2. list schedule this basic block.

DA

Software Pipelining

L Introduction

Loop Unrolling

for (i=0; i < N; i++) {
S(i)
}

rewritten into

for (i=0; i+4 < N; i+=4) {
S(i);
S(i+1);
S(i+2);
S(i+3)

}

for (; 1 < N; i++) {
S(i);

}

Disadvantages: code growth and no overlapping acgpss hack edge. . .n

Software Pipelining
L Introduction

Software Pipelining

generates a schedule that

» overlaps execution of consecutive iterations,
> initiates a new iteration in a fixed initiation interval, Il,
> respects dependences

» within the same iteration and

» between several iterations — loop-carried dependences,
» avoids resource conflicts.
Advantages:

» higher throughput,

» minimal code-size expansion

DA

Software Pipelining
L Introduction

Analogy to Hardware Pipelines

Instruction Pipeline: synchronous overlapped execution of
consecutive instructions,

issue of new instruction in every cycle if no hazards
Software Pipeline: synchronous overlapping execution of several
consecutive iterations,

one iteration issued every I/ cycles.

DA

Software Pipelining
L Introduction

maximal parallelism

A Software Pipeline — the Result of our Endeavour

Prolog: initiates the pipeline

Steady state
Kernel

Epilog

finishes remaining iterations

DA

Software Pipelining

L Introduction

Terminology and Generic Names

Operation:
Instruction:

Latency:
Delay:

Machine Operation, e.g. Load, Store, Add
names: a, b,c, ...

Set of operations scheduled at the same position,
names: A, B, C, ...

Execution time of an operation

Required distance between the termination of a and
the issue of b if (a — b)

u]
i}
1
u
it

DA

Software Pipelining

L Introduction

Delays as Functions of Dependence Type

Delay for (a —9 b) depends on the latencies of a and b and dt.

Assumptions:

> write-cycle is the last,
» read-cycles are any cycle but the last,

» in concurrent reads and writes, read reads old content.

delay conservative
i 1
du: latency(a) latency(a) b L .
ud: —1 + latency(a) — latency(b) 0 b 5-
dd: 1+ latency(a) — latency(b) latency(a) blE-

DA

Software Pipelining
L Introduction

Schedules

Schedule: Mapping from operations to positions (cycles),
0, 0flats Oswp -

Note: We are overloading o with two different meanings:

static: the schedule as produced by the compiler,
dynamic: the dynamic “unrolling” of this schedule.

SW pipelines: loops scheduled as SW pipelines are graphically
represented as a matrix:

» columns for original iterations,

» rows for positions in the SW pipeline.

DA

Software Pipelining

L Introduction

A Simple Loop and Potentially Parallel Execution

fori:=1to ndo
1: afi+1] := a[i]+1;

2: b[i] := afi+1])/2; 1: afi+1] := a[i]+1;
3: cfi] :=b[i] + 2; 2: b[i] := a[i+1)/2; 1: afi+1] = a[i]+1;
4: d[i] := c[i} 3: cfi] :=b[i] + 2; 2: b[i] := a[i+1]/2; 1: afi+1] := ai]+1;
od 4: d[i] := c[i} 3: cfi] :=b[i] + 2; 2: b[i] := a[i+1]/2;
4: d[i] := c[i} 3:cli] :=b[i] + 2;
4: d[i] := c[i}

Arrows represent dependences between instances of statements in
different iterations of the loop.

u]
i}
1
u
it

DA

Software Pipelining
L Dependences

Inter-iteration Dependencies (Loop Carried Dependencies)

Edges of the DDG are labelled with (depDist, delay)
dependence distance: number of iterations between two dependent
accesses (0 for intra-iteration dependencies),

delay: minimal number of cycles between the issue of two
dependent operations.

DA

Software Pipelining
L Dependences

for i:=1tondo

1: afi+1] := a[i]+1;

(0,1)
2: b[i] := a[i+1]/2;

(®

©oV
3: c[i] := b[i] + 2;

(0,1)@
4: d[i] := c[i}

®

nae

Software Pipelining
L Dependences

fori:=1tondo
1: afi+1] := a[i]+1;
2: b[i] := a[i+1)/2; 1: afi+1] := afil+1;x

3: cfi] := b[i] + 2; 2: b[i] := a[i+1]/2; 1: afi+1] := a[i]+1_'S
4: d[i] := c[i} 3:c[i] := b[i] + 2; 2: b[i] := afi+1)/2; 1: afi+1] := a[i]+1;
od 4: d[i] := c[i} 3: c[i] ;= bli] + 2; 2: bli] := a[i+1)/2;
4: d[i] := c[i} 3: cfi] := b[i] + 2;
4: d[i] := cfi}
(CY)
Iterations
0.1) " '1_| depDist
@ 2 delay [~ > 1 } Prolog
T 3 3 2 1
oV e (2321
M s 4 3 2 _
E e 4 3 } Epilog
17: 4
(0.1)

®

u]
i}
1
u
it

DA

Software Pipelining
L Dependences

Another Loop
fori:=1ton do
1: afi+2] :=afil+1; 1:afi+2] := afi]+1; 1:afi+2] := a[i]+1;

2: b[i] := a[i+2]/2; 2: b[i] := a[i+2)/2; 2: b[i] := a[i+2]/2; 1: afi+2] := a[i]+1;
3: cfi] := b[i] + 2; 3:clil:=bli]+2; 3:c[i]:=b[i]+2 2: b[i] := a[i+2)/2;
4: d[i] := c[i} 4: d[i] := c[i} 4: d[i] := c[i} 3:c[i] := b[i] + 2;
od 4: d[i] := c[i}

(2.)
ITERATIONS
0,1) _ ™1 depDist

} Prolog

111

I11: 11
@ 2 Ly 5
T 3 3 3 2 2 1
oV L (4433 27
M 5 4 4 3
E 4

1
2
: 3
16: 4
17:
0.1)

®

2 .
3} %pllog
47 4

DA

Software Pipelining
L Dependences

Examples of Dependences

Instructions a and b occur consecutively in the loop body.
i is the loop control variable.
instr. a instr. b DDG arc Dep. type depDist

m[i+2] :=x; y:=m[]; a—b
y == m[i+3]; mli] :=x; a—b

m[i] := x; y:=m[i-2], a—b
y := mli]; m[i-3] :=x; a—b
y =1t t:=x+1; a—b
b— a
t=x+1; y =1t a—b
b— a
y:i=x+ i y =1t a—b
b— a

u]
i}
1
u
it

DA

Software Pipelining
L Dependences

Examples of Dependences

Instructions a and b occur consecutively in the loop body.
i is the loop control variable.

instr. a instr. b DDG arc Dep. type depDist
m[i+2] :=x; y:= mJi]; a—b du 2
y == m[i+3]; mli] :=x; a—b ud 3
m[i] := x; y:=m[i-2], a— b du 2
y := mli]; m[i-3] ' =x;, a— b ud 3
y =1t t=x+1;, a—b ud 0
b—a du 1
t=x+1; y =1t a— b du 0
b—a ud 1
y:i=x+i y =t a—b dd 0
b—a dd 1

u}
o}
1
u

Software Pipelining
L Dependences

The General Software-Pipeline Scheduling Problem

Given:

> a loop with body £ and / iterations,

> a p—times parallel architecture.

Wanted: Efficient parallel schedule for £/ respecting the
dependence and resource constraints,

conceptually, £’ (£ unrolled / times) transformed into a/kCKw

KC, the Kernel, body of a new loop,

« the Prelude,

w the Postlude.

A new iteration of the new loop is initiated after a fixed number of
cycles, called the Initiation Interval, I/ .

u]
i}
1
u
it

Software Pipelining
L Dependences

Scheduling Constraints due to Dependences

For a, operation in L, let a, be the instance of a in the n—th iteration
Constraint for any schedule o due to (a — b, depDist, delay):

U(bm+depDist) > o(am) + delay

instructions independent of a
lterations

T am Earliest scheduling positions for instructions b
d ~—— with (a—b,.,1)

| Ie < with (a— b,.,2)
a|

M
Yy

E

<— with (a — b, ., delay)

u]
i}
1
u
it

DA

Software Pipelining
L Dependences

Scheduling due to Dependence Constraints 2

pagl: o .&a\@
g Eg g% EE%@
® @@
i ®

Q

®

o
O<0=0=0

» dependence graph is unrolled, loop-carried dependences
instantiated,

» operations are moved up while arrows still go downwards
(respecting delays).
[=] =) = =

DA

Software Pipelining
L Dependences

The Influence of the Dependence Distance

||||||||||||||||||

@) T T @ T
(o,lgg) , (? | v (v? |
2 we |
(g ® O\

O<O=O=

u]
i}
1
u
it

nae

Software Pipelining
L Dependences

Implications of the Scheduling Constraints

» bigger value of delay — later placement of b in the schedule,

> bigger value of depDist — later instance of b concerned —
more freedom to schedule,

» best achievable speedup depends on the
slope = delay /depDist.

P the extreme cases
sequential order enforced

lterations \
O T s ~— all instructions independent (doall loop)

Q | m\\;

\V M bmd tthe steepest slope determines the schedule

Q (1L1)

u]
i}
1
u
it

DA

Software Pipelining
L Dependences

Recurrence

Recurrence is the direct or indirect inter-iteration dependence of an
operation on itself (a cycle).

Operation without recurrence: all instances can be executed in
parallel to each other.

Let © = {di,...,d,} be an elementary cycle of the dependence
graph on an operation a.

delayo = >.I_; delay(d;)

depDistg = Y., depDist(d;)

u]
i}
1
u
it

DA

Software Pipelining

L Dependences

Strongly-Connected Components in the Dependency Graph

The algorithm will consider strongly-connected components of the
dependency graph.

Consequences of cyclic dependence:
» any predecessor is also a successor,

» topological sorting has to be modified to schedule operations
without all predecessors being already scheduled,

» scheduling an operation defines a deadline for all its successors

DA

Software Pipelining
L Dependences

Scheduling Constraints due to Resources

Each instance of an operation has other instances from successive
iterations executed /I, 2x 1I, 3x I, ... cycles later.

— Conflicts on a resource in a single iteration must be avoided at
times that are multiples of // apart.

= Total schedule is conflict-free if within a single iteration no
resource is used more than once at the same time modulo //.

u]
i}
1
u
it

DA

Software Pipelining
L Dependences

|dentifying a Kernel

Problem: Detect a repeating pattern in a newly made schedule to
make it the kernel.

ITERATIONS
fori:= T 110 111
| .
1 af] =i @y | O M 13 5402
E 34 2
2: b[i] := afi] * b[i - 1] I5: 3,

. _ o1 \\(0,1)
3: c[i] := bil/n;
4: d[i] := b[i] % n; @ @

Greedy scheduling, i.e. scheduling operation 1 as early as possible,
does not form a kernel.

u]
i}
1
u
it

DA

Software Pipelining
L Dependences

Stages

Schedule for a single iteration of the original loop, £, divided into a
sequence of stages of length /I.
Number of stages is the stage count, SC.

ITERATIONS STAGES
1 1)
(1,1) (0.2) 2: 2 1 Stage Count =

Ii s Ot B3

15: 3,4
01 \\(oyl)

®

mz— -

u]

i}
1
u

it

DA

Software Pipelining
L Dependences

Constraints

1. dependencies and resource constraints

3. widthof K< p

2. all operations from L occur once in IC,
Goal: |K| minimal

DA

Software Pipelining

L Dependences

Properties of the Kernel

» K contains operations of SC consecutive iterations of £

» Initiation Interval, Il = ||, the distance between two
consecutive iterations of the new loop,

» Il = |K] is bounded from below by the slope, delay/depDist,
where the arc controlling the /I is annotated with
(depDist, delay).

Observation:

» Prelude starts SC — 1 iterations,

» Postlude finishes SC — 1 iterations,

» all instructions of the original loop occur once in K.

DA

R

Software Pipelining
L Dependences

Example (revisited)

(2.1)
ITERATIONS
©1 ' 1 1 depDist
@ 12 delay[z > 1Tglope }Prolog
T 3 332 21
oV Fg A4 3 3 7 7 1 Kemel
M s 4 4 3 3 2 ,
% E e 4 4 3 Epilog
17: 4
0,1)

®

Slope is delay /depDist = 1/2 of loop-carried dependence.

u]

i}
1
u

it

DA

Software Pipelining
L Dependences

Approaches

move-then-schedule:

move code forwards/backwards over loop backedge to

improve schedule;
Problem: which operations to move and in which
multiplicity?
schedule-then-move:
find a schedule;
transform code accordingly

» unroll-while-scheduling: Kernel Recognition
complex bookkeeping of scheduling state
required
or

» generate and solve set of modulo constraints:

Modulo Scheduling

[m] = = =

DA

Software Pipelining
L Modulo Scheduling

Modulo Scheduling

Treats

» innermost loops

» one iteration of original loop (to start with; later tried with
several copies if available parallelism allows)

Basic steps
1. compute lower bound for I/
2. find schedule
3. generate kernel code
4

. generate prelude and postlude code

u]
i}
1
u
it

DA

Software Pipelining

L Modulo Scheduling

Lower Bound //,,;,

I min to be determined before scheduling; starting value for iteration.

Depends on the Resource Consumption of the operations and on
Dependences between the operations

Hmin = maX{IIreSa”dep}
[lyes

where

min{|o| |c conflict-free schedule}
and

delayg
lyep = MaXcycles © { lrdepDiste—‘ }
These terms will be explained in the following slides.

DA

Software Pipelining
L Modulo Scheduling

Determining //,es
Reservation Table for each operation O,
RTo : cycles x resources — {0,1} defines the resource
consumption at each cycle relative to issue time 0.
Resources are

> and ,
> of functional units.

Later, during scheduling used: Schedule Reservation Table,
(Modulo Reservation Table, MRT),

records which resource is used by which operation at a given time
of a schedule under construction.

When an operation is attempted to be scheduled at time ¢ its
reservation table is translated by t anded onto the SRT to check
for resource conflicts.

If no conflict, RTp is or'ed onto the current Schedule Reservation
Table. o & = .=

DA

Software Pipelining

L Modulo Scheduling

Complexities
Complexity of determining /l,es depends on the type of resource
consumption

Simple Reservation Tables: single resource in a single cycle at issue
cycle

cycles starting at issue cycle

Block Reservation Table: single resource for multiple, consecutive
Complex Reservation Table: all others

Alternative Reservation Tables: for operations executable on
different functional units

Determining the minimal /l,¢5 is equivalent to binpacking.

DA

Software Pipelining
L Modulo Scheduling

A Heuristics

Ignore dependences.

1. Sort operations of loop body in increasing order of number of
alternatives

2. Take next operation a from the list; for each resource r:

add the number of times a uses r to usageCount(r),

choose alternative with lowest (partial) maximal usage count
over all resources

Usage count for most heavily used resource constitutes the
approximated /s

u}
L)
1
u
it

DA

Software Pipelining

L Modulo Scheduling

Determining /lgep

graph

Let © = {d1,...,d,} be an elementary cycle of the dependence
delay o

= Yo, delay(d;)
depDistg

>°7_, depDist(d;)
Property of each schedule o and each operation a from L

o(am+i) —o(am) =11 x i

DA

Software Pipelining

L Modulo Scheduling

Determining /l4e, (cont'd)

Resulting Constraint for llge,: VO. depDistg X llgep > delayg
Transformed into:

delayg
v Mgy > | ————
VO Mlaep = [depDist@—‘

e —m delayg
dep = M&X depDistg

Choose:

DA

Software Pipelining

L Modulo Scheduling

Computing /lgep

Alternatives:

» Enumerate all elementary cycles and determine

delayg
maxe { ’VdepDist@-‘ }
» shortest-path algorithm

» minimal cost-to-time ratio cycle problem

nae

Software Pipelining
L Modulo Scheduling

Algorithm for the minimal cost-to-time ratio cycle problem
2 Mmin

MinDist(i, j] is the smallest legal interval between o(i) and o(j) in
the same iteration.

Initialize

—oo if no edge from i to j
MinDist[i,j] = { max(max{d|(a — b,0,d)},
max{delay(a) — depDist(e) x Il | depDist(e) > 0})
Iterate the minimal cost-to-time ratio cycle algorithm with increasing
Hmin:
» MinDist[i,i] > 0: impossible = increase /I

» MinDist[i,i] < 0 for all i: = slack around every cycle =
decrease II;

» Termination, if at least for one i MinDistLi, i = 0.

DA

Software Pipelining
L Modulo Scheduling

Iterative Modulo Scheduling

Compute

limin
I1:= limin

procedure ModuloSchedule Find Schedul

with Il

IT = IImin; found := false;

valid invalid

(* some heuristic control *)

Modulo
(* to enforce termination *) Increase
d Schedul¢ Il
o

if iterativeSchedule(II,...)
then found := true
else IT := IT + 1

until found

Scheduling Priority: Basis is Height-based priority (assumes
acyclicity) extended for inter-iteration dependences

& =

DA

Software Pipelining
L Modulo Scheduling

Instruction Scheduling vs. Operation Scheduling

Difference: what is the subject of scheduling?

Instruction Scheduling Operation Scheduling
instruction to be filled operation to be scheduled
at each point in time: select an operation:

select max. number of candidate
operations that can be scheduled
and schedule them

schedule it at a legal and
profitable position

Modulo scheduling uses operation scheduling, since operations may
have to be scheduled several times.

u}
L)

1
u
it
S
o
i)

Software Pipelining
L Modulo Scheduling

Difference of Modulo Scheduling to Acyclic List Scheduling

>

Operation can be unscheduled by backtracking —-
operation can be scheduled several times —-
modulo scheduling uses operation scheduling.

Modulo Schedule Reservation Table,

MRT][t mod I, r] records use of resource r at time t
— length of MRT =1/

conflict at time t = conflict at all times t +n x /I
— scheduling only for a candidate interval
[MinTime, MaxTime] where MaxTime = MinTime + Il — 1

List Scheduling always finds a time slot.

Procedure TimeSlot might not find a legal schedule of the
current operation in the interval [MinTime, MaxTime] —
backtracking.

DA

R

Software Pipelining
L Modulo Scheduling

function IterativeSchedule(...)

function IterativeSchedule(II, ...) boolean;
var Op, Estart, MinTime, MaxTime, TimeSlot: int;
begin

schedule (START, 0); (* START pseudooperation *)

while list of non-scheduled operations is not empty and ... do
begin

Op := highestPriorityOperation;

Estart := CalculateEarliestStart(0Op);

MinTime := Estart;

MaxTime := MinTime + II -1;

TimeSlot := TimeSlot(0Op, MinTime, MaxTime);

Schedule(Op, TimeSlot); (* may unschedule conflicting operations *)
end;
IterativeSchedule := (list of non-scheduled operations empty?)
end;

u]

i}
1
u

Ul

DA

Software Pipelining
L Modulo Scheduling

function TimeSlot(...)

function TimeSlot(Op, MinT, MaxT: int) int;
var CurrTime, SchedSlot: int;

begin

CurrTime := minT; SchedSlot :=0;

while SchedSlot = 0 and CurrTime < MaxT do
if ResourceConflict(Op, CurrTime)

then CurrTime := CurrTime + 1;
else SchedSlot := CurrTime
fi;

if SchedSlot = 0
then if (NeverScheduled(Op) or MinT > PrevSchedTime [0Op]
then SchedSlot := MinT
else SchedSlot := prevSchedTime[Op]+1
fi;
TimeSlot := SchedSlot
end

u]

i}
1
u

Ul

DA

Software Pipelining

L Modulo Scheduling

Height-based Priority and Earliest Start

Priority function: height-based extended to cyclic and inter-iteration
dependences.

Uses effective delay.

EffDelay(p — q) = delay(p — q) — Il x depDist(p — q)
0
HeightR(p) =

if pis STOP
MaXqesuce(p)(0, HeightR(q) + delay(p — q)
—II « depDist(p — q)) otherwise
Warning: Recursion difficult to resolve!
0
Estart(p) = max
(P) q<pred(p)

if q is non-scheduled
max (0, SchedTime(q)+
delay(q — p) — Il x depDist(q — p))

otherwise

=}

=

DA

Software Pipelining
L Modulo Scheduling

Candidate Time Slots

Correctness of schedule

» as for resource usage: guaranteed by MRT

» as for dependences: uses Estart,
earliest time slot for operation to be scheduled

Peculiarity in iterative modulo scheduing:

not all predecessors may have been scheduled or may have remained

scheduled

Constraints for scheduling the current operation:
» dependences on predecessors: Estart yields earliest slot

» dependences on successors: conflicts solved by unscheduling

DA

Software Pipelining

L Modulo Scheduling

Unscheduling

» slot in [MinTime, MaxTime] found without resource conflict:
unschedule operation with dependence conflict

» no slot in [MinTime, MaxTime] found without resource

conflict: choose time slot + choose operation to unschedule

DA

Software Pipelining
L Modulo Scheduling

Increase Exploitable Parallelism

» |F-conversion to eliminate forward branches

» Elimination of pseudo dependences introduced by register

allocation

Rotating registers or variable expansion

DA

Software Pipelining
L Modulo Scheduling

Predicated Execution

Motivation

» costs of speculation:
processor speed is growing
issue width is growing
static speculation: more code moved past branches — more
compensation code inserted
dynamic speculation: higher costs of misprediction
» branches limit ILP

u]

i}
1
u
it

DA

Software Pipelining
L Modulo Scheduling

Predicated Instructions

Predicated instruction add ril,r1,1 (P)

conditionally executed depending on the value in predicate register
P

Execution
» Normal instruction fetch
» predicate true: normal execution

» predicate false: instruction nullified — no effect on the state

DA

Software Pipelining

L Modulo Scheduling

Predicate-register setting instruction

pred < comp> Pyt 1(boolopy), Pout2(boolopy), si, sz, (Pin)
1. Compares s; with s, according to < comp>,

2. combines the value of P;, with the result

» using boolean operation boolop; to compute Poyut 1
» using boolean operation boolop, to compute Poyt 2

Available boolean operations: Unconditional (U), conditional, NOT,
AND, ANDNOT, ...

DA

Software Pipelining

L Modulo Scheduling

If-Conversion

Conditionals translated into predicated code

outermost conditional:

if-conv(if comp(a,b) then e, else e, , true) =
pred comp g1(U), g2(NOT U), a, b;
if-conv(er, q1);

if-conv(ez, g2);

where g1 and g, are unused predicates
nested conditionals:

if-conv(if comp(a,b) then ¢; else e, , p)
pred comp g1 (AND), g2(ANDNOT), a,
if-conv(er, q1);

b, p;
if-conv(er, qo);

where g1 and g, are unused predicates

DA

	Introduction

