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Part I

Foundations
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An inconvenient property

Program

a← 1

b← a + a
c ← a + 1
e ← b + 1
← c

d ← 1
e ← a + 1
← d

...

Interference Graph

a

b

c

e

d

The number of live variables at each instruction (register pressure) is 2

However, we need 3 registers for a correct register allocation

This gap can be arbitrarily large
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[Chaitin ’80, Briggs ’92, Appel & George ’96, Park & Moon ’04]

Build IG Coalesce Color

Spill

coloring heuristic failed

program changed

Every undirected graph can occur as an interference graph
=⇒ Finding a k-coloring is NP-complete

Color using heuristic
=⇒ Iteration necessary

Might introduce spills although IG is k-colorable

Rebuilding the IG each iteration is costly
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[Chaitin ’80, Briggs ’92, Appel & George ’96, Park & Moon ’04]

Build IG Coalesce Color

Spill

coloring heuristic failed

program changed

Spill-code insertion is crucial for the program’s performance

Hence, it should be very sensitive to the structure of the program
I Place load and stores carefully

I Avoid spilling in loops!

Here, it is merely a fail-safe for coloring
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Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.
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PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique
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PEOs

Graphs with holes larger than 3 have no PEO, e.g.

Graphs with PEOs are called chordal

Core Theorem of SSA Register Allocation
[Brisk; Bouchez, Darte, Rastello; Hack, around 2005]

The dominance relation in SSA programs induces a PEO in the IG

Thus, SSA IGs are chordal
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Before a value v is added to a PEO,
add all values whose definitions are dominated by v

A post order walk of the dominance tree defines a PEO

A pre order walk of the dominance tree yields a coloring sequence

IGs of SSA-form programs can be colored optimally in O(k · |V |)

Without constructing the interference graph itself

Number of needed registers is exactly determined by register pressure

After lowering the pressure, no additional spills will be introduced

But . . .

What about the φ-functions?
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Consider following example

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations
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Straight-line code

Program Live Ranges

aa← · · ·

bb ← · · ·
cc ← · · ·

dd ← a + b

ee ← c + 1

aa← · · ·

Interference Graph

a

b

c

d

e

How can we create a 4-cycle {a, c , d , e}?

Redefine a =⇒ SSA violated!
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Program and live ranges

a← · · ·

d ← · · ·
e ← a + · · ·
← d

b← · · ·
c ← a + · · ·
e ← b
← c

Interference Graph

d
a

b
c

e
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Program and live ranges

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

Interference Graph

d
a

b
c

e1

e3

e2
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Parallel copies Sequential copies

(a′, b′, c ′, d ′)← (a, b, c , d)

d ′ ← d
c ′ ← c
b′ ← b
a′ ← a

a

a′

b

b′

c

c ′

d

d ′

a

a′

b

b′

c

c ′

d

d ′
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IGs of SSA-form programs are chordal

The dominance relation induces a PEO

Architecture without iteration

Spill Color

Coalesce

Φ-Impl.

Register assignment optimal in linear time

Do not need to construct interference graph
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Part II

Register Constraints
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Certain instructions require operand to reside in special register

Instruction set architecture (ISA), e.g.:
Shift count must be in cl on x86

Calling conventions, e.g.:
First integer argument of function in R3 on PPC/Linux

Caller-/Callee-save registers within a function
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IR:

· · · ← call foo t1, t2, t3

Lower IR:

...
mov R3, t1
mov R4, t2
mov R5, t3
call foo
...

Registers are like variables
in the lower IR

Multiple assignments
possible (breaks SSA!)

Has poor engineering
properties:

Always special case in the
code

Does R3 interfere with
t1?

How long can a reg live
range be?
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Theorem [Marx ’05]

If a chordal graph contains two nodes precolored to the same color,
coloring is NP-complete

Solution:

Split all live ranges in front of the constrained instruction

Separates graph into two components

Annotate the constraints at the instruction

Let the coloring algorithm fulfill the constraints

Basically pushes the problem to the coalescer
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Before:
a← · · ·

...
← call foo (b, c, d)
...
← a

After:
a← · · ·

...
(a′, b′, c ′, d ′)← (a, b, c , d)

← call foo (b′, c ′, d ′)
...
← a′

Sebastian Hack SSA Register Allocator 18 / 35



computer science

saarland
universityCaller-/Callee-Save

Can be modelled by normal register constraints

Callee-Save registers are implicit parameters to a function

Caller-Save registers are implicit results of a function

Insert dummy SSA variables for these parameters

The spiller will (transparently) do the rest

(c1, c2) ← start
...

(r1, r2) ← call foo(b, c , d)
dummy use(r1, r2)

...
← end (c1, c2)
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Part III

Spilling

Sebastian Hack SSA Register Allocator 20 / 35



computer science

saarland
universitySpilling

SSA-Form Register Allocation

Spilling is not dependent on the coloring algorithm

Do not spill nodes in an interference graph

To color optimally:
Reduce register pressure to number of available registers

Can insert store and load instructions sensitively to the program’s
structure

Most important:
I Pull reloads in front loops

I Push stores behind loops

Revisit Belady’s algorithm
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Linearizations

y←
x←

 1
...

S

← y
...

L

← x
...

H

... E

Example CFG

y←
x←

 1
...

S

← y
...

L

← x
...

H

...E

x spilled

Bad:
Reload in
loop

y←
x←

 1
...

S

← x
...

H

← y
...

L

...E

y spilled

Good: No
reload in
loop
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Linearizations

y←
x←

 1
...

S

← y
...

L

← x
...

H

... E

Example CFG

y←
x←

 1
...

S

← y
...

L

← x
...

H

...E

Linearization

Register occupation at entry
of H is given by exit of L!

However, there is no
control-flow between both

Example last slide:

I Linearization dictates reloads

I Might unnecessarily reload in
loops!

Why do we linearize at all?
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Belady evicts the variable whose next use is farthest in the future

Good because frees register for the longest possible time

On straight-line code minimum number of replacements

Our goals:

Extend Belady to CFGs

Try to emulate Belady on each trace as good as possible

Keep it simple: Apply Belady to each basic block once

Where can we tweak?
I Next-use distance

I Occupation of the registers at entry of each block
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y← · · ·
x← · · ·

 1
...

S

 0
...

B

← x

 1
...
← x

L

← x
...

H

← y
← x

E

y←
x←

 1
...

S

← x

 1
...

← x

L

← y
← x

E

One of x, y has to be
spilled at the end of S

Use of y is farther away

We cannot know this by
only looking at S

Conclusion:
Need global next-uses
distances!
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y← · · ·
x← · · ·

 1
...

S

 0
...

B

← x

 1
...
← x

L

← x
...

H

← y
← x

E

Consider E

x is in a register on both
incoming branches

We can assume it to be in
registers on the entry of E

Conclusion:
Processing predecessors
first makes register
occupation available
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y← · · ·
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 1
...

S

 0
...

B

← x

 1
...
← x

L

← x
...

H

← y
← x

E

y←
x←

 1
...

S

 0
...B

← x
...

H

← x
...

H

← x
...

H

← y
← x

E

Neither x nor y can
“survive” B

x is reloaded in first
execution of H

Can be used from a
register ever after

Conclusion:
Provide “loop workset” at
loop entrances
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[Braun & Hack, CC’09]

Apply furthest-first algorithm to each block in the CFG once

Do not flatten the CFG

Algorithm

1 Compute global next uses (entails liveness!)

2 For each block B in reverse post order of the CFG:

1 Determine initialization of register set sensitive to CF predecessors
2 Insert coupling code at the block entry
3 Perform Belady’s algorithm on B

3 Reconstruct SSA
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x0 ←

← spill x0
...

x0 ← reload
← x0

← x0

x0 ←

← spill x0
...

x1 ← reload
← x1

← x0

x0 ←

← spill x0
...

x1 ← reload
← x1

x2 ← φ(x0, x1)
· · · ← x2

Inserting reloads for variables creates additional definitions

Violates SSA

Thus, SSA has to be reconstructed after spilling

Use algorithm by [Sastry & Ju PLDI’97]
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Implemented in our x86 research compiler libFirm

Features SSA-based register allocator

Ran CINT2000 benchmark

Compare against Chaitin/Briggs graph-coloring allocator (GC)
LLVM’s linear scan (LS)

Quality

Reduction of executed spills
and reloads against:

GC LS

Reloads 58.2% 54.5%
Spills 41.9% 61.5%

Compilation Speed
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Average throughput:
430 insns per msec

(2GHz Core 2 Duo)
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Part IV

Coalescing

Sebastian Hack SSA Register Allocator 29 / 35



computer science

saarland
universityCoalescing

[Hack & Goos, PLDI’08]

Do not modify the graph

Modify the coloring!

Try to assign copy-related nodes the same color

Introduce cost function for colorings
=⇒ Sum of all weights of unfulfilled affinities

Initial coloring (cost: 6)

2

1
2

1

Better coloring (cost: 1)

2

1
2

1
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[Hack & Goos, PLDI’08]

Do not modify the graph

Modify the coloring!

Try to assign copy-related nodes the same color

Introduce cost function for colorings
=⇒ Sum of all weights of unfulfilled affinities

Initial coloring (cost: 6)
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Better coloring (cost: 1)

2

1
2
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[Hack & Goos, PLDI’08]

Do not modify the graph

Modify the coloring!

Try to assign copy-related nodes the same color

Introduce cost function for colorings
=⇒ Sum of all weights of unfulfilled affinities

Coalesce after coloring

Spill Color Coalesce
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Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1
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Conservative Coalescing
I Best known conservative coalescing technique

I Costs left over by IRC were reduced by 22.5%

I Number of copies left over by IRC reduced by 44.3%

Aggressive/Optimistic Coalescing
I Did not compare to aggressive coalescing algorithms

I May spill =⇒ different problem
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Coloring is easy

SSA separates spilling from coalescing
=⇒ Simplifies engineering

Both remain hard and challenging

Spilling can be more sensitive to program
=⇒ no additional spills due to failed coloring

Coalescing never violates the coloring

We never insert a spill/reload in favor of a saved copy

Everything implemented within

http://www.libfirm.org

and is more than a proof of concept:
Our Quake server is compiled with libFirm ;)

Michael Beck will present libFirm on Thursday
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